An adjuvant composed of saponin and a TLR4 agonist acts by enhancing lymph flow and antigen entry into lymph nodes.
Germinal centres are the engines of antibody evolution. Here, using human immunodeficiency virus (HIV) Env protein immunogen priming in rhesus monkeys followed by a long period without further immunization, we demonstrate germinal centre B (B GC ) cells that last for at least 6 months. A 186-fold increase in B GC cells was present by week 10 compared with conventional immunization. Single-cell transcriptional profiling showed that both light- and dark-zone germinal centre states were sustained. Antibody somatic hypermutation of B GC cells continued to accumulate throughout the 29-week priming period, with evidence of selective pressure. Env-binding B GC cells were still 49-fold above baseline at 29 weeks, which suggests that they could remain active for even longer periods of time. High titres of HIV-neutralizing antibodies were generated after a single booster immunization. Fully glycosylated HIV trimer protein is a complex antigen, posing considerable immunodominance challenges for B cells 1 , 2 . Memory B cells generated under these long priming conditions had higher levels of antibody somatic hypermutation, and both memory B cells and antibodies were more likely to recognize non-immunodominant epitopes. Numerous B GC cell lineage phylogenies spanning more than the 6-month germinal centre period were identified, demonstrating continuous germinal centre activity and selection for at least 191 days with no further antigen exposure. A long-prime, slow-delivery (12 days) immunization approach holds promise for difficult vaccine targets and suggests that patience can have great value for tuning of germinal centres to maximize antibody responses.
Germinal centers (GCs) are the engines of antibody evolution. Using HIV Env protein immunogen priming in rhesus monkeys (RM) followed by a long period without further immunization, we demonstrate GC B cells (BGC) lasted at least 6 months (29 weeks), all the while maintaining rapid proliferation. A 186-fold BGC cell increase was present by week 10 compared to a conventional immunization. Single cell transcriptional profiling revealed that both light zone and dark zone GC states were sustained throughout the 6 months. Antibody somatic hypermutation (SHM) of BGC cells continued to accumulate throughout the 29 week priming period, with evidence of selective pressure. Additionally, Env-binding BGC cells were still 49-fold above baseline 29 weeks after immunization, suggesting that they could be active for significantly longer periods of time. High titers of HIV neutralizing antibodies were generated after a single booster immunization. Fully glycosylated HIV trimer protein is a complex antigen, posing significant immunodominance challenges for B cells, among other difficulties. Memory B cells (BMem) generated under these long priming conditions had higher levels of SHM, and both BMem cells and antibodies were more likely to recognize non-immunodominant epitopes. Numerous BGC cell lineage phylogenies spanning the >6-month GC period were identified, demonstrating continuous GC activity and selection for at least 191 days, with no additional antigen exposure. A long prime, adjuvanted, slow delivery (12-day) immunization approach holds promise for difficult vaccine targets, and suggests that patience can have great value for tuning GCs to maximize antibody responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.