Deactivation pathways of electronically excited states have been investigated in three protonated aromatic amino acids: tryptophan (Trp), tyrosine (Tyr) and phenylalanine (Phe). The protonated amino acids were generated by electrospray and excited with a 266 nm femtosecond laser, the subsequent decay of the excited states being monitored through fragmentation of the ions induced and/or enhanced by another femtosecond pulse at 800 nm. The excited state of TrpH+ decays in 380 fs and gives rise to two channels: hydrogen atom dissociation or internal conversion (IC). In TyrH, the decay is slowed down to 22.3 ps and the fragmentation efficiency of PheH+ is so low that the decay cannot be measured with the available laser. The variation of the excited state lifetime between TrpH+ and TyrH+ can be ascribed to energy differences between the dissociative pi sigma* state and the initially excited pi pi* state.
The photofragmentation of protonated tryptophan has been investigated in a unique experimental setup, in which ion and neutral issued from the photofragmentation are detected in coincidence, in time and in position. From these data are extracted the kinetic energy, the number of neutral fragments associated with an ion, their masses, and the order of the fragmentation steps. Moreover, the fragmentation time scale ranging from tens of nanoseconds to milliseconds is obtained. From all these data, a comprehensive fragmentation mechanism is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.