Abstract. On board the four Cluster spacecraft, the Cluster Ion Spectrometry (CIS) experiment measures the full, threedimensional ion distribution of the major magnetospheric ions (H + , He + , He ++ , and O + ) from the thermal energies to about 40 keV/e. The experiment consists of two different instruments: a COmposition and DIstribution Function analyser (CIS1/CODIF), giving the mass per charge composition with medium (22.5 • ) angular resolution, and a Hot Ion AnalCorrespondence to: H. Rème (Henri.Reme@cesr.fr) yser (CIS2/HIA), which does not offer mass resolution but has a better angular resolution (5.6 • ) that is adequate for ion beam and solar wind measurements. Each analyser has two different sensitivities in order to increase the dynamic range.
International audienceThe MAVEN spacecraft launched in November 2013, arrived at Mars in September 2014, and completed commissioning and began its one-Earth-year primary science mission in November 2014. The orbiter’s science objectives are to explore the interactions of the Sun and the solar wind with the Mars magnetosphere and upper atmosphere, to determine the structure of the upper atmosphere and ionosphere and the processes controlling it, to determine the escape rates from the upper atmosphere to space at the present epoch, and to measure properties that allow us to extrapolate these escape rates into the past to determine the total loss of atmospheric gas to space through time. These results will allow us to determine the importance of loss to space in changing the Mars climate and atmosphere through time, thereby providing important boundary conditions on the history of the habitability of Mars. The MAVEN spacecraft contains eight science instruments (with nine sensors) that measure the energy and particle input from the Sun into the Mars upper atmosphere, the response of the upper atmosphere to that input, and the resulting escape of gas to space. In addition, it contains an Electra relay that will allow it to relay commands and data between spacecraft on the surface and Earth
In this paper we study a flow burst event which took place during enhanced geomagnetic activity on July 22, 2001, when Cluster was located in the postmidnight magnetotail. The flow burst was associated with a clear dipolarization ahead of the high‐speed part of the predominantly Earthward directed flow. Based on the analysis of the four spacecraft data, we found that a ∼2000 km thick dipolarization front moves Earthward and dawnward with a speed of ∼77 km/s. The plasma before this front is deflected, consistent with the plasma ahead of a localized plasma bubble centered at midnight side being pushed aside by the moving obstacle. The main body of the high‐speed flow is directed mainly parallel to the dipolarization front. These observations indicate that the evolution of the dipolarization front across the tail is directly coupled with the fast flow.
Abstract. Thirty rapid crossings of the magnetotail current sheet by the Cluster spacecraft during July-October 2001 at a geocentric distance of 19 R E are examined in detail to address the structure of the current sheet. We use four-point magnetic field measurements to estimate electric current density; the current sheet spatial scale is estimated by integration of the translation velocity calculated from the magnetic field temporal and spatial derivatives. The local normalrelated coordinate system for each case is defined by the combining Minimum Variance Analysis (MVA) and the curlometer technique. Numerical parameters characterizing the plasma sheet conditions for these crossings are provided to facilitate future comparisons with theoretical models. Three types of current sheet distributions are distinguished: centerpeaked (type I), bifurcated (type II) and asymmetric (type III) sheets. Comparison to plasma parameter distributions show that practically all cases display non-Harris-type behavior, i.e. interior current peaks are embedded into a thicker plasma sheet. The asymmetric sheets with an off-equatorial current density peak most likely have a transient nature. The ion contribution to the electric current rarely agrees with the current computed using the curlometer technique, indicating that either the electron contribution to the current is strong and variable, or the current density is spatially or temporally structured.
A detailed analysis of the ULF noise observed on the GEeS magnetic antennas in the frequency range -0.2-12 Hz has revealed the properties of structured emissions occurring just above the proton gyrofrequency whose existence was reported by Russell et al. (1970) and Gurnett (1976). These waves are observed in the vicinity of the geomagnetic equator at all L values between -4 and -8. They propagate in a direction perpendicular to the dc magnetic field. The waves consist of harmonically related monochromatic emissions. The fundamental frequency is generally of the order of the local proton gyrofrequency. Sometimes the fundamental and first harmonics are missing. If there is more than one fundamental frequency present, nonlinear coupling often occurs between the different emissions. The amplitudes of individual events vary from some tens of milligammas to some hundreds. Their duration ranges from some tens of minutes to some hours. Within the range of sensitivity of the detectors (10 -2 3/Hz -1/2 at 1 Hz, 10 -3 3/Hz -1/2 at 8 Hz) the average probability of emission occurrence during a given hour is 12%, this number increases to ---30% during the afternoon and in the premidnight sectors. Simultaneous observations of proton fluxes, as obtained from the two GEeS particle experiments show that these waves are often associated with distribution functions peaking at some energy (5 •< E •< 30 keV) for 90 ø pitch angle particles. This ring-like distribution provides the energy source for the excitation of non-resonant (k•} = 0) instabilities near nF.+ (n = running number). A theoretical model is presented that qualitatively explains the main characteristics of the observed waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.