Measurements of the ZZ and WW final states in the mass range above the and thresholds provide a unique opportunity to measure the off-shell coupling strength of the Higgs boson. This paper presents constraints on the off-shell Higgs boson event yields normalised to the Standard Model prediction (signal strength) in the , and final states. The result is based on pp collision data collected by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 20.3 fb at a collision energy of TeV. Using the method, the observed 95 confidence level (CL) upper limit on the off-shell signal strength is in the range 5.1–8.6, with an expected range of 6.7–11.0. In each case the range is determined by varying the unknown and background K-factor from higher-order quantum chromodynamics corrections between half and twice the value of the known signal K-factor. Assuming the relevant Higgs boson couplings are independent of the energy scale of the Higgs boson production, a combination with the on-shell measurements yields an observed (expected) 95 CL upper limit on in the range 4.5–7.5 (6.5–11.2) using the same variations of the background K-factor. Assuming that the unknown background K-factor is equal to the signal K-factor, this translates into an observed (expected) 95 CL upper limit on the Higgs boson total width of 22.7 (33.0) MeV.
A likelihood-based discriminant for the identification of quark- and gluon-initiated jets is built and validated using 4.7 fb of proton–proton collision data at collected with the ATLAS detector at the LHC. Data samples with enriched quark or gluon content are used in the construction and validation of templates of jet properties that are the input to the likelihood-based discriminant. The discriminating power of the jet tagger is established in both data and Monte Carlo samples within a systematic uncertainty of 10–20 %. In data, light-quark jets can be tagged with an efficiency of while achieving a gluon-jet mis-tag rate of in a range between and for jets in the acceptance of the tracker. The rejection of gluon-jets found in the data is significantly below what is attainable using a Pythia 6 Monte Carlo simulation, where gluon-jet mis-tag rates of 10 % can be reached for a 50 % selection efficiency of light-quark jets using the same jet properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.