The transcriptome of conidia of Aspergillus niger was analysed during the first 8 h of germination. Dormant conidia started to grow isotropically two h after inoculation in liquid medium. Isotropic growth changed to polarised growth after 6 h, which coincided with one round of mitosis. Dormant conidia contained transcripts from 4 626 genes. The number of genes with transcripts decreased to 3 557 after 2 h of germination, after which an increase was observed with 4 780 expressed genes 8 h after inoculation. The RNA composition of dormant conidia was substantially different than all the subsequent stages of germination. The correlation coefficient between the RNA profiles of 0 h and 8 h was 0.46. They were between 0.76–0.93 when profiles of 2, 4 and 6 h were compared with that of 8 h. Dormant conidia were characterised by high levels of transcripts of genes involved in the formation of protecting components such as trehalose, mannitol, protective proteins (e.g. heat shock proteins and catalase). Transcripts belonging to the Functional Gene Categories (FunCat) protein synthesis, cell cycle and DNA processing and respiration were over-represented in the up-regulated genes at 2 h, whereas metabolism and cell cycle and DNA processing were over-represented in the up-regulated genes at 4 h. At 6 h and 8 h no functional gene classes were over- or under-represented in the differentially expressed genes. Taken together, it is concluded that the transcriptome of conidia changes dramatically during the first two h and that initiation of protein synthesis and respiration are important during early stages of germination.
A rapid, high-throughput antimicrobial screening assay was developed using either a physical fluid extraction or a solvent extraction technique coupled to the commercially available PremiTest. The solvent extraction approach was fully validated for a wide range of tissues and the fluid extraction approach partially validated for porcine muscle. Both procedures can detect a wide range of antimicrobial compounds at or below maximum residue limit concentrations. The use of a solvent extraction provides an enhanced test capable of detecting a wider range of drugs than the fluid extraction approach at or below half maximum residue limit levels in a variety of matrices. Biochemical methods for the class-specific identification of beta-lactams and sulphonamides following initial screening were developed and validated. The approach is a significant improvement on existing methodologies as a tool for residues monitoring in surveillance programmes.
Airborne and waterborne fungal spores were compared with respect to cytoplasmic viscosity and the presence of ergosterol. These parameters differed markedly between the two spore types and correlated with spore survival. This suggests that the mode of spore dispersal has a bearing on cellular composition, which is relevant for the eradication of industrially relevant fungal propagules.Contamination of food products by fungi often starts with dispersal vehicles that include air-and waterborne spores. The aim of this study was to assess whether air-and waterborne spores are not only different with respect to surface wettability but also have a distinct membrane and cytoplasmic composition. To this end, microviscosity and the presence of ergosterol in the plasma membrane were determined. Ergosterol is the target of many antifungals, and its presence or absence will affect sensitivity to such antifungals, including natamycin. Natamycin is considered a fungistatic antibiotic. It binds to ergosterol but is not able to disrupt the plasma membrane (9, 11). In this study, conidia of Penicillium discolor, Aspergillus niger (airborne), Fusarium oxysporum, and Verticillium fungicola (waterborne) were used. All of these species are relevant in applied situations ranging from postharvest diseases (Aspergillus and Fusarium) and food spoilage (Penicillium) to mycoparasitism of mushrooms (Verticillium). A. niger N402 and P. discolor CBS112557 were grown on malt extract agar (MEA; 7) at 25°C. F. oxysporum CBS116593 and V. fungicola MES12712 were grown on oatmeal agar (7) at 25°C. Low-temperature scanning electron microscopy of uncoated samples (8) clearly showed that the conidia of Verticillium and Fusarium were formed in large (spherical) clusters or on the surface of the colony amid the mycelium, while the other fungi showed clearly elevated spore-forming structures that formed chains of conidia (Fig. 1). Conidia of 10-to 12-day-old cultures were harvested in cold ACES buffer [10 mM N-(2-acetamido)-2-aminoethanesulfonic acid, 0.02% Tween 80, pH 6.8] and stored on ice before experimentation on the same day.Cytoplasmic microviscosity of air-and waterborne spores. The viscosity of the interior of the cell has been correlated with the dormancy and stress resistance of fungal spores (1). Spin label electron spin resonance (ESR) spectroscopy was utilized to measure the cytoplasmic microviscosity of conidia using the spin label perdeuterated TEMPONE (4-oxo-2,2,6,6-tetramethylpiperidine-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.