The scientific community that includes meteorologists, physical scientists, engineers, medical doctors, biologists, and environmentalists has shown interest in a better understanding of fog for years because of its effects on, directly or indirectly, the daily life of human beings. The total economic losses associated with the impact of the presence of fog on aviation, marine and land transportation can be comparable to those of tornadoes or, in some cases, winter storms and hurricanes. The number of articles including the word ''fog'' in Journals of American Meteorological Society alone was found to be about 4700, indicating that there is substantial interest in this subject. In spite of this extensive body of work, our ability to accurately forecast/nowcast fog remains limited due to our incomplete understanding of the fog processes over various time and space scales. Fog processes involve droplet microphysics, aerosol chemistry, radiation, turbulence, large/small-scale dynamics, and surface conditions (e.g., partaining to the presence of ice, snow, liquid, plants, and various types of soil). This review paper summarizes past achievements related to the understanding of fog formation, development and decay, and in this respect, the analysis of observations and the development of forecasting models and remote sensing methods are discussed in detail. Finally, future perspectives for fog-related research are highlighted.
Due to the significant impact of fog and low stratus (FLS) on economy, ecology and traffic systems, there is a growing demand for high-resolution information on FLS occurrence. In this study, a baseline climatology of FLS h day −1 based on data recorded from 2006-2015 by the Spinning Enhanced Visible and Infrared Imager system (SEVIRI) aboard the Meteosat Second Generation satellites is computed for Europe to provide the requested information. It is the first 10 year, spatially explicit climatology for FLS based on data with a temporal resolution of 15 min. The dataset is validated against Meteorological Aviation Routine Weather Reports (METAR) and shows good accordance with an average Heidke Skill Score of 0.45. Temporal and spatial variations in FLS frequency as well as interannual trends are analyzed. Winter shows the highest FLS occurrence, but a general decrease over the investigated period. Spring, summer and autumn show less pronounced trends and lower average FLS frequencies. Possible reasons for these distributions are discussed.
Mountain regions worldwide present a pronounced spatiotemporal precipitation variability, which added to scarce monitoring networks limits our understanding of the generation processes involved. To improve our understanding of clouds and precipitation dynamics and cross-scale generation processes in mountain regions, we analyzed spatiotemporal rainfall patterns using satellite cloud products (SCP) in the Paute basin (900–4200 m a.s.l. and 6481 km2) in the Andes of Ecuador. Precipitation models, using SCP and GIS data, reveal the spatial extension of three regimes: a three-modal (TM) regime present across the basin, a bimodal (BM) regime, along sheltered valleys, and a unimodal (UM) regime at windward slopes of the eastern cordillera. Subsequently, the spatiotemporal analysis using synoptic information shows that the dry season of the BM regime during boreal summer is caused by strong subsidence inhibiting convective clouds formation. Meanwhile, in UM regions, low advective shallow cap clouds mainly cause precipitation, influenced by water vapor from the Amazon and enhanced easterlies during boreal summer. TM regions are transition zones from UM to BM and zones on the windward slopes of the western cordillera. These results highlight the suitability of satellite and GIS data-driven statistical models to study spatiotemporal rainfall seasonality and generation processes in complex terrain, as the Andes.
Information about clouds is important for observing and predicting weather and climate as well as for generating and distributing solar power. Most existing approaches extract cloud information from satellite data by classifying individual pixels instead of using closely integrated spatial information, ignoring the fact that clouds are highly dynamic, spatially continuous entities. This paper proposes a novel cloud classification method based on deep learning. Relying on a Convolutional Neural Network (CNN) architecture for image segmentation, the presented Cloud Segmentation CNN (CS-CNN), classifies all pixels of a scene simultaneously rather than individually. We show that CS-CNN can successfully process multispectral satellite data to classify continuous phenomena such as highly dynamic clouds. The proposed approach produces excellent results on Meteosat Second Generation (MSG) satellite data in terms of quality, robustness, and runtime compared to other machine learning methods such as random forests. In particular, comparing CS-CNN with the CLAAS-2 cloud mask derived from MSG data shows high accuracy (0.94) and Heidke Skill Score (0.90) values. In contrast to a random forest, CS-CNN produces robust results and is insensitive to challenges created by coast lines and bright (sand) surface areas. Using GPU acceleration, CS-CNN requires only 25 ms of computation time for classification of images of Europe with 508 × 508 pixels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.