A: The S experiment is a very short baseline reactor antineutrino experiment aiming at testing the hypothesis of light sterile neutrinos as an explanation of the deficit of the observed neutrino interaction rate with respect to the predicted rate, known as the Reactor Antineutrino Anomaly. The detector center is located 10 m away from the compact, highly 235 U enriched core of the research nuclear reactor of the Institut Laue Langevin in Grenoble, France. This paper describes the S site, the detector components and associated shielding designed to suppress the external sources of background which were characterized on site. It reports the performances in terms of detector response and energy reconstruction.
The measurement of the direction of WIMP-induced nuclear recoils is a
compelling but technologically challenging strategy to provide an unambiguous
signature of the detection of Galactic dark matter. Most directional detectors
aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas
or solid targets. The main challenge with directional detection is the need for
high spatial resolution over large volumes, which puts strong requirements on
the readout technologies. In this paper we review the various detector readout
technologies used by directional detectors. In particular, we summarize the
challenges, advantages and drawbacks of each approach, and discuss future
prospects for these technologies.Comment: 58 pages, 26 figures, accepted by Physics Report
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.