Understanding the regulation of immune responses is central for control of autoimmune and infectious disease. In murine models of autoimmunity and chronic inflammatory disease, potent regulatory T lymphocytes have recently been characterized. Despite an explosion of interest in these cells, their relevance to human disease has been uncertain. In a longitudinal study of malaria sporozoite infection via the natural route, we provide evidence that regulatory T cells have modifying effects on blood-stage infection in vivo in humans. Cells with the characteristics of regulatory T cells are rapidly induced following blood-stage infection and are associated with a burst of TGF-beta production, decreased proinflammatory cytokine production, and decreased antigen-specific immune responses. Both the production of TGF-beta and the presence of CD4+CD25+FOXP3+ regulatory T cells are associated with higher rates of parasite growth in vivo. P. falciparum-mediated induction of regulatory T cells may represent a parasite-specific virulence factor.
The outcome of malaria infection is determined, in part, by the balance of pro-inflammatory and regulatory immune responses. Failure to develop an effective pro-inflammatory response can lead to unrestricted parasite replication, whilst failure to regulate this response leads to the development of severe immunopathology. IL-10 and TGF-β are known to be important components of the regulatory response, but the cellular source of these cytokines is still unknown. Here we have examined the role of natural and adaptive regulatory T cells in the control of malaria infection and find that classical CD4+CD25hi (and Foxp3+) regulatory T cells do not significantly influence the outcome of infections with the lethal (17XL) strain of Plasmodium yoelii (PyL). In contrast, we find that adaptive IL-10-producing, CD4+ T cells (which are CD25−, Foxp3−, and CD127− and do not produce Th1, Th2, or Th17 associated cytokines) that are generated during both PyL and non-lethal P. yoelii 17X (PyNL) infections are able to down-regulate pro-inflammatory responses and impede parasite clearance. In summary, we have identified a population of induced Foxp3− regulatory (Tr1) T cells, characterised by production of IL-10 and down regulation of IL-7Rα, that modulates the inflammatory response to malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.