Context. Since the discovery of its dusty disk in 1984, β Pictoris has become the prototype of young early-type planetary systems, and there are now various indications that a massive Jovian planet is orbiting the star at ∼10 AU. However, no planets have been detected around this star so far. Aims. Our goal was to investigate the close environment of β Pic, searching for planetary companion(s). Methods. Deep adaptive-optics L -band images of β Pic were recorded using the NaCo instrument at the Very Large Telescope. Results. A faint point-like signal is detected at a projected distance of 8 AU from the star, within the northeastern extension of the dust disk. Various tests were made to rule out possible instrumental or atmospheric artefacts at a good confidence level. The probability of a foreground or background contaminant is extremely low, based in addition on the analysis of previous deep HST images. Its L = 11.2 apparent magnitude would indicate a typical temperature of ∼1500 K and a mass of ∼8 M Jup . If confirmed, it could explain the main morphological and dynamical peculiarities of the β Pic system. The present detection is unique among A-stars by the proximity of the resolved planet to its parent star. Its closeness and location inside the β Pic disk suggest a formation process by core accretion or disk instabilities rather than binary-like formation processes.
Observations of circumstellar environments that look for the direct signal of exoplanets and the scattered light from disks have significant instrumental implications. In the past 15 years, major developments in adaptive optics, coronagraphy, optical manufacturing, wavefront sensing, and data processing, together with a consistent global system analysis have brought about a new generation of high-contrast imagers and spectrographs on large ground-based telescopes with much better performance. One of the most productive imagers is the Spectro-Polarimetic High contrast imager for Exoplanets REsearch (SPHERE), which was designed and built for the ESO Very Large Telescope (VLT) in Chile. SPHERE includes an extreme adaptive optics system, a highly stable common path interface, several types of coronagraphs, and three science instruments. Two of them, the Integral Field Spectrograph (IFS) and the Infra-Red Dual-band Imager and Spectrograph (IRDIS), were designed to efficiently cover the near-infrared (NIR) range in a single observation for an efficient search of young planets. The third instrument, ZIMPOL, was designed for visible (VIS) polarimetric observation to look for the reflected light of exoplanets and the light scattered by debris disks. These three scientific instruments enable the study of circumstellar environments at unprecedented angular resolution, both in the visible and the near-infrared. In this work, we thoroughly present SPHERE and its on-sky performance after four years of operations at the VLT.
The detection of extrasolar planets implies an extremely high-contrast, long-exposure imaging capability at near infrared and probably visible wavelengths. We present here the core of any Planet Finder instrument, that is, the extreme adaptive optics (XAO) subsystem. The level of AO correction directly impacts the exposure time required for planet detection. In addition, the capacity of the AO system to calibrate all the instrument static defects ultimately limits detectivity. Hence, the extreme AO system has to adjust for the perturbations induced by the atmospheric turbulence, as well as for the internal aberrations of the instrument itself. We propose a feasibility study for an extreme AO system in the frame of the SPHERE (Spectro-Polarimetry High-contrast Exoplanet Research) instrument, which is currently under design and should equip one of the four VLT 8-m telescopes in 2010.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.