Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework describing the atmospheric evolution of OA that is constrained by high-time-resolution measurements of its composition, volatility, and oxidation state. OA and OA precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA), with concentrations comparable to those of sulfate aerosol throughout the Northern Hemisphere. Our model framework captures the dynamic aging behavior observed in both the atmosphere and laboratory: It can serve as a basis for improving parameterizations in regional and global models.
Organic aerosol (OA) data acquired by the Aerosol Mass Spectrometer (AMS) in 37 field campaigns were deconvolved into hydrocarbon‐like OA (HOA) and several types of oxygenated OA (OOA) components. HOA has been linked to primary combustion emissions (mainly from fossil fuel) and other primary sources such as meat cooking. OOA is ubiquitous in various atmospheric environments, on average accounting for 64%, 83% and 95% of the total OA in urban, urban downwind, and rural/remote sites, respectively. A case study analysis of a rural site shows that the OOA concentration is much greater than the advected HOA, indicating that HOA oxidation is not an important source of OOA, and that OOA increases are mainly due to SOA. Most global models lack an explicit representation of SOA which may lead to significant biases in the magnitude, spatial and temporal distributions of OA, and in aerosol hygroscopic properties.
The application of mass spectrometric techniques to the real-time measurement and characterization of aerosols represents a significant advance in the field of atmospheric science. This review focuses on the aerosol mass spectrometer (AMS), an instrument designed and developed at Aerodyne Research, Inc. (ARI) that is the most widely used thermal vaporization AMS. The AMS uses aerodynamic lens inlet technology together with thermal vaporization and electron-impact mass spectrometry to measure the real-time non-refractory (NR) chemical speciation and mass loading as a function of particle size of fine aerosol particles with aerodynamic diameters between approximately 50 and 1,000 nm. The original AMS utilizes a quadrupole mass spectrometer (Q) with electron impact (EI) ionization and produces ensemble average data of particle properties. Later versions employ time-of-flight (ToF) mass spectrometers and can produce full mass spectral data for single particles. This manuscript presents a detailed discussion of the strengths and limitations of the AMS measurement approach and reviews how the measurements are used to characterize particle properties. Results from selected laboratory experiments and field measurement campaigns are also presented to highlight the different applications of this instrument. Recent instrumental developments, such as the incorporation of softer ionization techniques (vacuum ultraviolet (VUV) photo-ionization, Li+ ion, and electron attachment) and high-resolution ToF mass spectrometers, that yield more detailed information about the organic aerosol component are also described.
A new technique has been developed to deconvolve and quantify the mass concentrations of hydrocarbon-like and oxygenated organic aerosols (HOA and OOA) using highly time-resolved organic mass spectra obtained with an Aerodyne Aerosol Mass Spectrometer (AMS). This technique involves a series of multivariate linear regressions that use mass-to-charge ratios (ml/s) 57 (mostly C4H9+) and 44 (mostly CO2+)-the identified AMS mass spectral tracers for HOA and OOA, respectively-as the initial principal components. Two algorithms have been developed: algorithm 1 is based solely on m/z 44 and m/z 57, and algorithm 2 is an iterative procedure expanded from algorithm 1. This technique was applied to the AMS organic aerosol data acquired at the EPA Pittsburgh Supersite during September 2002. The reconstructed organic concentrations (= HOA + OOA) agree well with the measured values (r2 = 0.997, slope = 0.998), and the reconstructed organic data matrix (size = 3199 time steps x 300 m/z's) explains 99% of the variance in the measured time series. In addition, the extracted mass spectrum of HOA shows high similarity to those of diesel exhaust, lubricating oil, and freshly emitted traffic aerosols observed in urban areas, while the spectrum of OOA closely resembles those of aged organic aerosols sampled in rural areas and also shows similarity with the spectrum of fulvic acid- a humic-like substance that is ubiquitous in the environment and has previously been used as an analogue to represent polyacid components found in highly processed and oxidized atmospheric organic aerosols. There is evidence for the presence of a third component, although its contribution to the total organic signal appears to be small in this study. The most important result is that m/z 44 and m/z 57 are reliable AMS mass spectral "markers" that provide the "first guess" for algorithm 2 which allows the quantitative description of the organic aerosol concentration and mass spectra over a period of 16 days in a major urban area and allows the extraction of mass spectra of OOA and HOA that can be interpreted chemically. These findings indicate the potential of performing organic source apportionment on the basis of total particle mass, rather than on the basis of organic tracer compounds that contribute a small fraction of this mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.