Stellar magnetic field measurements obtained from spectropolarimetry offer key data for activity and dynamo studies, and we present the results of a major high-resolution spectropolarimetric Bcool project magnetic snapshot survey of 170 solar-type stars from observations with the Telescope Bernard Lyot and the Canada-France-Hawaii Telescope. For each target star a high signal-to-noise circularly polarised Stokes V profile has been obtained using Least-Squares Deconvolution, and used to detect surface magnetic fields and measure the corresponding mean surface longitudinal magnetic field (B l ). Chromospheric activity indicators were also measured.Surface magnetic fields were detected for 67 stars, with 21 of these stars classified as mature solar-type stars, a result that increases by a factor of four the number of mature solar-type stars on which magnetic fields have been observed. In addition, a magnetic field was detected for 3 out of 18 of the subgiant stars surveyed. For the population of K-dwarfs the mean value of |B l | (|B l | mean ) was also found to be higher (5.7 G) than |B l | mean measured for the G-dwarfs (3.2 G) and the F-dwarfs (3.3 G). For the sample as a whole |B l | mean increases with rotation rate and decreases with age, and the upper envelope for |B l | correlates well with the observed chromospheric emission. Stars with a chromospheric S-index greater than about 0.2 show a high magnetic field detection rate and so offer optimal targets for future studies.This survey constitutes the most extensive spectropolarimetric survey of cool stars undertaken to date, and suggests that it is feasible to pursue magnetic mapping of a wide range of moderately active solar-type stars to improve understanding of their surface fields and dynamos.
We study with unprecedented detail the chemical composition and stellar parameters of the solar twin 18 Sco in a strictly differential sense relative to the Sun. Our study is mainly based on high resolution (R ∼ 110 000) high S/N (800-1000) VLT UVES spectra, which allow us to achieve a precision of about 0.005 dex in differential abundances. The effective temperature and surface gravity of 18 Sco are T eff = 5823±6 K and log g = 4.45±0.02 dex, i.e., 18 Sco is 46±6 K hotter than the Sun and log g is 0.01±0.02 dex higher. Its metallicity is [Fe/H] = 0.054±0.005 dex and its microturbulence velocity is +0.02±0.01 km s −1 higher than solar. Our precise stellar parameters and differential isochrone analysis show that 18 Sco has a mass of 1.04±0.02M ⊙ and that it is ∼1.6 Gyr younger than the Sun. We use precise HARPS radial velocities to search for planets, but none were detected. The chemical abundance pattern of 18 Sco displays a clear trend with condensation temperature, showing thus higher abundances of refractories in 18 Sco than in the Sun. Intriguingly, there are enhancements in the neutron-capture elements relative to the Sun. Despite the small element-to-element abundance differences among nearby n-capture elements (∼0.02 dex), we successfully reproduce the r-process pattern in the solar system. This is independent evidence for the universality of the r-process. Our results have important implications for chemical tagging in our Galaxy and nucleosynthesis in general.
tugal * Based on observations obtained at the European Southern Observatory (observing programs 083.D-0871 and 188.C-0265).-3 - ABSTRACTWe present the first detailed chemical abundance analysis of the old 8.2 Gyr solar twin, HIP 102152. We derive differential abundances of 21 elements relative to the Sun with precisions as high as 0.004 dex ( 1%), using ultra high-resolution (R = 110,000), high S/N UVES spectra obtained on the 8.2-m Very Large Telescope. Our determined metallicity of HIP 102152 is [Fe/H] = -0.013 ± 0.004.The atmospheric parameters of the star were determined to be 54 K cooler than the Sun, 0.09 dex lower in surface gravity, and a microturbulence identical to our derived solar value. Elemental abundance ratios examined vs. dust condensation temperature reveal a solar abundance pattern for this star, in contrast to most solar twins. The abundance pattern of HIP 102152 appears to be the most similar to solar of any known solar twin. Abundances of the younger, 2.9Gyr solar twin, 18 Sco, were also determined from UVES spectra to serve as a comparison for HIP 102152. The solar chemical pattern of HIP 102152 makes it a potential candidate to host terrestrial planets, which is reinforced by the lack of giant planets in its terrestrial planet region. The following non-local thermodynamic equilibrium Li abundances were obtained for HIP 102152, 18 Sco, and the Sun: log ǫ (Li) = 0.48 ± 0.07, 1.62 ± 0.02, and 1.07 ± 0.02, respectively.The Li abundance of HIP 102152 is the lowest reported to date for a solar twin, and allows us to consider an emerging, tightly constrained Li-age trend for solar twin stars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.