Abstract. The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its 2-year mission, TESS will employ four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars with I C ≈ 4 − 13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from 1 month to 1 year, depending mainly on the star's ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10 to 100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every 4 months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
We present results of our Chandra observation with ACIS-I centered on the position of Sagittarius A * (Sgr A * ), the compact nonthermal radio source associated with the massive black hole (MBH) at the dynamical center of the Milky Way Galaxy. We have obtained the first high spatial resolution (≈ 1 ′′ ), hard X-ray (0.5-7 keV) image of the central 40 pc (17 ′ ) of the Galaxy.We have discovered an X-ray source, CXOGC J174540.0−290027, coincident with the radio position of Sgr A * to within 0. ′′ 35, corresponding to a maximum projected distance of 16 light-days for an assumed distance to the center of the Galaxy of 8.0 kpc. We received 222 ± 17 (1σ) net counts from the source in 40.3 ks. The source is detected with high significance, S/N ≃ 37σ, despite the highly elevated diffuse X-ray background in the central parsec of the Galaxy. Due to the low number of counts, the spectrum is well fit either by an absorbed power-law model with photon index Γ = 2.7 +1.3 −0.9 (N (E) ∝ E −Γ photons cm −2 s −1 keV −1 ) and column density N H = (9.8 +4.4 −3.0 ) × 10 22 cm −2 (90% confidence interval) or by an absorbed optically thin thermal plasma model with kT = 1.9 +0.9 −0.5 keV and N H = (11.5 +4.4 −3.1 ) × 10 22 cm −2 . Using the power-law model, the measured (absorbed) flux in the 2-10 keV band is (1.3 +0.4 −0.2 ) × 10 −13 ergs cm −2 s −1 , and the absorption-corrected luminosity is (2.4 +3.0 −0.6 ) × 10 33 ergs s −1 . The X-ray source coincident with Sgr A * is resolved, with an apparent diameter of ≈ 1 ′′ . We report the possible detection, at the 2.7σ significance level, of rapid continuum variability on a timescale of several hours. We also report the possible detection of an Fe Kα line at the ≃ 2σ level. The long-term variability of Sgr A * is constrained via comparison with the ROSAT /PSPC observation in 1992. The origin of the X-ray emission (MBH vs. stellar) and the implications of our observation for the various proposed MBH emission mechanisms are discussed. The current observations, while of limited signalto-noise, are consistent with the presence of both thermal and nonthermal emission components in the Sgr A * spectrum.We also briefly discuss the complex structure of the X-ray emission from the Sgr A radio complex and along the Galactic plane and present morphological evidence that Sgr A * and Sgr A West lie within the hot plasma in the central cavity of Sgr A East. Over 150 point sources are detected in the 17 ′ × 17 ′ field of view. Our survey of X-ray sources is complete down to a limiting 2-10 keV absorbed flux of F X ≈ 1.7 × 10 −14 ergs cm −2 s −1 . For sources at the distance of the Galactic Center, the corresponding absorption-corrected luminosity is L X ≈ 2.5 × 10 32 ergs s −1 . The complete flux-limited sample contains 85 sources. Finally, we present an analysis of the integrated emission from the detected point sources and the diffuse emission within the central 0.4 pc (10 ′′ ) of the Galaxy.
The Transiting Exoplanet Survey Satellite (TESS ) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its two-year mission, TESS will employ four wide-field optical CCD cameras to monitor at least 200,000 main-sequence dwarf stars with I C < ∼ 13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from one month to one year, depending mainly on the star's ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10-100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every four months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.
We describe and discuss the global properties of 45 gamma-ray bursts (GRBs) observed by HETE-2 during the first three years of its mission, focusing on the properties of X-Ray Flashes (XRFs) and X-ray-rich GRBs (XRRs). We find that the numbers of XRFs, XRRs, and GRBs are comparable. We find that the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.