Edge localized modes (ELMs) in high-confinement mode plasmas were completely suppressed in KSTAR by applying n=1 nonaxisymmetric magnetic perturbations. Initially, the ELMs were intensified with a reduction of frequency, but completely suppressed later. The electron density had an initial 10% decrease followed by a gradual increase as ELMs were suppressed. Interesting phenomena such as a saturated evolution of edge T(e) and broadband changes of magnetic fluctuations were observed, suggesting the change of edge transport by the applied magnetic perturbations.
We report recent experimental results from HL-2A and KSTAR on ELM mitigation by supersonic molecular beam injection (SMBI). Cold particle deposition within the pedestal by SMBI is verified in both machines.The signatures of ELM mitigation by SMBI are an ELM frequency increase and ELM amplitude decrease.These persist for an SMBI influence time τI. Here, τI is the time for the SMBI influenced pedestal profile to refill. An increase in f SMBI ELM /f 0 ELM and a decrease in the energy loss per ELM WELM were achieved in both machines. Physical insight was gleaned from studies of density and vφ(toroidal rotation velocity) evolution, particle flux and turbulence spectra, divertor heat load. The characteristic gradients of the pedestal density soften and a change in vφwas observed during a τI time. The spectra of the edge particle flux Г~ < ˜vr˜ne> and density fluctuation with and without SMBI were measured in HL-2A and in KSTAR, respectively. A clear phenomenon observed is the decrease in divertor heat load during the τI time in HL-2A. Similar results are the profiles of saturation current density Jsat with and without SMBI in KSTAR. We note that τI/τp (particle confinement time) is close to ~1, although there is a large difference in individual τI between the two machines. This suggests that τI is strongly related to particle-transport events. Experiments and analysis of a simple phenomenological model support the important conclusion that ELM mitigation by SMBI results from an increase in higher frequency fluctuations and transport events in the pedestal.
Torodial rotation profiles have been investigated in KSTAR H-mode plasma using combined auxiliary heating by co-neutral beam injection (NBI) and electron cyclotron resonance heating (ECH). The ion temperature and toroidal rotation are measured with x-ray imaging crystal spectroscopy (XICS) and charge exchange recombination spectroscopy (CES).H-mode plasma is achieved using co-current 1.3MW NBI, and a 0.35 MW ECH pulse is added to the flattop of H-mode. The core rotation profiles, which are centrally peaked in the pure NBI heating phase, flatten when ECH is injected, while the edge pedestal is unchanged.Dramatic decreases in the core toroidal rotation values (V tor /V tor ~ -30%) are observed when on-axis ECH is added to H-mode. The experimental data shows that the decrease of core rotation velocity and its gradient are correlated with the increase of core electron temperature and its gradient, and also with the likely steepening of the density gradient. We thus explore the viability of a hypothesized ITG→TEM transition as the explanation of the observed counter-current flow induced by ECH. However, the results of linear microstability analyses using inferred profiles suggest that the TEM is excited only in the deep core, so the viability of the hypothesized explanation is not yet clear.PACS numbers: 52.55Hc, 52.55Fa, 52.50.Sw, 52.50.Gj IntroductionFlow and velocity shear are very important for stabilizing micro-and macro-instabilities in tokamak plasmas. Neutral beam injection (NBI) is generally used as the external momentum input source to produce and control plasma rotation in present day tokamaks. For ITER and future reactors, the input torque from NBI will be very low or nonexistent and cannot produce the needed rotation. As a result, there is a need to develop alternative or complementary methods for driving plasma rotation. Significant intrinsic rotation (without external momentum input) has been observed on many tokamaks [1], which suggests that it may be possible to reap the benefits of such self-generated flows in ITER and reactors.Since the discovery of intrinsic rotation in the 1990s [2, 3], plasma rotation without external torque has been a topic of intense interest. While significant progress has been made, the driving mechanism is not fully understood. Theoretical models have been proposed to explain intrinsic rotation as due to a turbulence driven intrinsic torque [4][5][6][7]. Intrinsic torque is dynamic and variable -due to evolving turbulent Reynolds stresses. Momentum transport bifurcations and reversals have been observed in several experiments [8,9]. The effects on toroidal rotation of ECH have being observed previously in CHS [10], DIII-D [11], JT-60U[12] and AUG [13,14]. The counter-current rotation increment or flattening of co-current rotation profile was confirmed in these ECH experiments. The proposed explanations vary considerably. The KSTAR results in this paper, though partly similar to some previous experiments, will be combined with gyrokinetic stability analyses to elucidate poss...
The 4 th KSTAR campaign in 2011 concentrated on active ELM control by various methods such as non-axisymmetric magnetic perturbations, supersonic molecular beam injection (SMBI), vertical jogs of the plasma column, and edge electron heating. The segmented in-vessel control coil (IVCC) system is capable of applying n≤2 perturbed field with different phasing among top, middle, and bottom coils. Application of an n=1 perturbed field showed desirable ELM suppression result. Fast vertical jogs of the plasma column achieved ELM pace making and ELMs locked to 50 Hz vertical jogs were observed with a high probability of phase locking. A newly installed SMBI system was utilized for ELM control and a state of mitigated ELMs was sustained by the optimized repetitive SMBI pulse for a few tens of ELM periods. A change of ELM behavior was seen due to edge electron heating although the effect of ECH launch needs supplementary analyses. The ECEI images of suppressed/mitigated ELM states showed apparent differences when compared to natural ELMy states. Further analyses are ongoing to explain the observed ELM control results.
A decade-long operation of the Korean Superconducting Tokamak Advanced Research (KSTAR) has contributed significantly to the operation of superconducting tokamak devices and the advancement of tokamak physics which will be beneficial for the ITER and K-DEMO programs. Even with limited heating capability, various conventional as well as new operating regimes have been explored and have achieved improved performance. As examples, a long pulse high-confinement mode operation with and without an edge-localized mode (ELM) crash was well over 70 and 30 s, respectively. The unique capabilities of KSTAR allowed it to improve the capability of controlling harmful instabilities, and they have been instrumental in uncovering much new physics. The highlights are that the L/H transition threshold power is sensitive to the resonant magnetic perturbation (RMP) and insensitive to non-resonant magnetic perturbation. Co-Ip offset rotation dominated by an electron channel predicted by general neoclassical toroidal viscosity theory was confirmed. Improved heat dispersal in a divertor system using three rows of rotating RMP was demonstrated and predictive control of the ELM-crash with a priori modeling was successfully tested. In magnetohydrodynamic physics, validation of the full reconnection model (i.e. q0 > 1 right after the sawtooth crash) and self-consistent validation of the anisotropic distribution of turbulence amplitude and flow in the presence of the 2/1 island with theoretical models were achieved. The turbulence amplitude induced by RMP was linearly increased with the slow RMP coil current ramp-up time (i.e. the magnetic diffusion time scale). The Dα spikes (i.e. ELM-crash amplitude) was linearly decreased with the turbulence amplitude and not correlated with the perpendicular electron flow. In the turbulence area, a non-diffusive ‘avalanche’ transport event and the role of a quiescent coherent mode in confinement were studied. To accommodate the anticipation of a higher performance of the KSTAR plasmas with the increased heating powers, a new divertor/internal interface with a full active cooling system will be implemented after a full test of the new heating (neutral beam injection II and electron cyclotron heating) and current drive (CD) (Helicon and lower hybrid CD) systems. An upgrade plan for the internal hardware, heating systems and efficient CD system may allow for a long pulse operation of higher performance plasmas at βN > 3.0 with f bs ~ 0.5 and Ti > 10 keV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.