A 20 MW/5GHz Lower Hybrid Current Drive (LHCD) system was initially due to be commissioned and used for the second mission of ITER, i.e. the Q=5 steady state target. Though not part of currently planned procurement phase, it is now under consideration for an earlier delivery. In this paper, both physics and technology conceptual designs are reviewed.
Achieving steady-state plasma operation at high plasma temperatures is one of the important goals of worldwide magnetic fusion research. High temperatures of approximately 1–2 keV, and steady-state plasma sustainment operations have been reported. Recently the steady-state operation regime was greatly extended in the Large Helical Device (LHD). A high-temperature plasma was created and maintained for 54 min with 1.6 GJ in the 2005FY experimental programme. The three-dimensional heat-deposition profile of the LHD helical divertor was modified, and during long-pulse discharges it effectively dispersed the heat load using a magnetic axis swing technique developed at the LHD. A sweep of only 3 cm in the major radius of the magnetic axis position (less than 1% of the major radius of the LHD) was enough to disperse the divertor heat load. The steady-state plasma was heated and sustained mainly by hydrogen minority ion heating using ion cyclotron range of frequencies and partially by electron cyclotron of fundamental resonance frequency. By accumulating the small flux of charge-exchanged neutral particles during the long-pulse operation, a high energy ion tail which extended up to 1.6 MeV was observed. This is the first experimental evidence of high energetic ion confinement of MeV range in helical devices. The long-pulse operations lasted until a sudden increase in radiation loss occurred, presumably because of metal wall flakes dropping into the plasma. The sustained line-averaged electron density and temperature were approximately 0.8 × 1019 m−3 and 2 keV, respectively, at a 1.3 GJ discharge (#53776) and 0.4 × 1019 m−3 and 1 keV at a 1.6 GJ discharge (#66053). The average input power was 680 kW and 490 kW, and the plasma duration was 32 min and 54 min, respectively. These successful long operations show that the heliotron configuration has a high potential as a steady-state fusion reactor.
The steady-state operation of high-performance plasmas in the Large Helical Device (LHD) has progressed since the 2010 IAEA Conference in Korea by means of a newly installed ion cyclotron heating (ICH) antenna (HAS antenna) and an improved electron cyclotron heating (ECH) system. The HAS antenna can control the launched parallel wave number and heat the core plasma efficiently in the case of dipole mode operation. Understanding of the physics and technology of wave heating, particle and heat flow balances, and plasma–wall interactions in LHD has also improved. The heating power of steady-state ICH and ECH exceeded 1 MW and 500 kW, respectively, and a higher density helium plasma with minority hydrogen ions was maintained using the HAS antenna and new 77 GHz gyrotrons. As a result, plasma performance improved, e.g. electron temperature of more than 2 keV at a density of more than 2 × 1019 m−3 became possible for more than 1 min. Heat flow balance and particle flux balance of steady-state operation were evaluated. Particle balance analysis indicated that externally fed helium and hydrogen particles were mainly absorbed by the chamber wall and divertor plates, even after the 54 min operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.