This paper will discuss the design and construction of BESIII [1], which is designed to study physics in the τ-charm energy region utilizing the new high luminosity BEPCII double ring e + ecollider [2]. The expected performance will be given based on Monte Carlo simulations and results of cosmic ray and beam tests. In BESIII, tracking and momentum measurements for charged particles are made by a cylindrical multilayer drift chamber in a 1 T superconducting solenoid. Charged particles are identified with a time-of-flight system based on plastic scintillators in conjunction with dE/dx (energy loss per unit pathlength) measurements in the drift chamber. Energies of electromagnetic showers are measured by a CsI(Tl) crystal calorimeter located inside the solenoid magnet. Muons are identified by arrays of resistive plate chambers in the steel magnetic flux return. The level 1 trigger system, Data Acquisition system and the event filter system based on networked computers will also be described.
We study the process e+ e- →(D* D*)± π∓ at a center-of-mass energy of 4.26 GeV using a 827 pb(-1) data sample obtained with the BESIII detector at the Beijing Electron Positron Collider. Based on a partial reconstruction technique, the Born cross section is measured to be (137±9±15) pb. We observe a structure near the (D* D*)± threshold in the π∓ recoil mass spectrum, which we denote as the Zc±(4025). The measured mass and width of the structure are (4026.3±2.6±3.7) MeV/c2 and (24.8±5.6±7.7) MeV, respectively. Its production ratio σ(e+ e- → Zc±(4025)π∓ → (D* D*)± π∓)/σ(e+ e- → (D* D*)± π∓) is determined to be 0.65±0.09±0.06. The first uncertainties are statistical and the second are systematic.
We summarize a search for the top quark with the Collider Detector at Fermilab (CDF) in a sample of Pp collisions at Js =1.8 TeV with an integrated luminosity of 19.3 pb . We find 12 events consistent with either two 8' bosons, or a 8' boson and at least one b jet. The probability that the measured yield is consistent with the background is 0.26%. Though the statistics are too limited to establish firmly the existence of the top quark, a natural interpretation of the excess is that it is due to tt production.Under this assumption, constrained fits to individual events yield a top quark mass of 174+ 10 -)) GeV/c . The tt production cross section is measured to be 13.9 -+)II pb. PACS numbers: 14.65.Ha, 13.85.Ni, 13.85.gk The standard model has enjoyed outstanding success, yet the top quark, which is required as the weak-isospin partner of the bottom quark, has remained unobserved. Direct searches at the Fermilab Tevatron have placed a 95%%uo confidence level lower limit of M&,~& 131 GeV/c [1]. Global fits to precision electroweak measurements yield a favored mass of M&,~= 177-+|I+ -I9 GeV/c [2]. One expects that, at Tevatron energies, most top quarks are produced in pairs. For M,o&~85 GeV/c, each top quark decays to a real 8' boson and a b quark.The observed event topology is then determined by the decay mode of the two H bosons. About 5k of the time 226 VOLUME 73, NUMBER 2 PHYSICAL REVIEW LETTERS 11 JULY 1994 both W bosons decay to ev or p v (the "dilepton mode"), giving two high-P~leptons with opposite charge, two b jets, and large missing transverse energy (k"7. ) from the undetected neutrinos [3]. In another 30% of the cases one W boson decays to ev or p v, and the other to a qq' pair (the "lepton+jets mode"). This final state includes a high-Pz charged lepton, k"z, and jets from the 8' and the two b quarks. The remaining 65% of the final states involve the hadronic decays of both W bosons, or the decay of one or both of the 8'bosons into r leptons. These channels have larger backgrounds and are not considered here. This analysis is based on a sample of pp collisions at vs =1. 8 TeV with an integrated luminosity of 19.3
In an analysis of a 2.92 fb −1 data sample taken at 3.773 GeV with the BESIII detector operated at the BEPCII collider, we measure the absolute decay branching fractions B(D 0 → K − e + νe) = (3.505 ± 0.014 ± 0.033)% and B(D 0 → π − e + νe) = (0.295 ± 0.004 ± 0.003)%. From a study of the differential decay rates we obtain the products of hadronic form factor and the magnitude of the CKM matrix element f ), we determine the ratio |V cd |/|Vcs| = 0.238 ± 0.004 ± 0.002 ± 0.011, where the third error is from the uncertainty in the LCSR normalization. In addition, we measure form factor parameters for three different theoretical models that describe the weak hadronic charged currents for these two semileptonic decays. All of these measurements are the most precise to date.
We observe a narrow enhancement near 2m(p) in the invariant mass spectrum of pp pairs from radiative J/psi-->gammapp decays. No similar structure is seen in J/psi-->pi(0)pp decays. The results are based on an analysis of a 58 x 10(6) event sample of J/psi decays accumulated with the BESII detector at the Beijing electron-positron collider. The enhancement can be fit with either an S- or P-wave Breit-Wigner resonance function. In the case of the S-wave fit, the peak mass is below 2m(p) at M=1859(+3)(-10) (stat)+5-25(syst) MeV/c(2) and the total width is Gamma<30 MeV/c(2) at the 90% confidence level. These mass and width values are not consistent with the properties of any known particle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.