Novel species of microfungi described in the present study include the following from South Africa: Cercosporella dolichandrae from Dolichandra unguiscati, Seiridium podocarpi from Podocarpus latifolius, Pseudocercospora parapseudarthriae from Pseudarthria hookeri, Neodevriesia coryneliae from Corynelia uberata on leaves of Afrocarpus falcatus, Ramichloridium eucleae from Euclea undulata and Stachybotrys aloeticola from Aloe sp. (South Africa), as novel member of the Stachybotriaceae fam. nov. Several species were also described from Zambia, and these include Chaetomella zambiensis on unknown Fabaceae, Schizoparme pseudogranati from Terminalia stuhlmannii, Diaporthe isoberliniae from Isoberlinia angolensis, Peyronellaea combreti from Combretum mossambiciensis, Zasmidium rothmanniae and Phaeococcomyces rothmanniae from Rothmannia engleriana, Diaporthe vangueriae from Vangueria infausta and Diaporthe parapterocarpi from Pterocarpus brenanii. Novel species from the Netherlands include: Stagonospora trichophoricola, Keissleriella trichophoricola and Dinemasporium trichophoricola from Trichophorum cespitosum, Phaeosphaeria poae, Keissleriella poagena, Phaeosphaeria poagena, Parastagonospora poagena and Pyrenochaetopsis poae from Poa sp., Septoriella oudemansii from Phragmites australis and Dendryphion europaeum from Hedera helix (Germany) and Heracleum sphondylium (the Netherlands). Novel species from Australia include: Anungitea eucalyptorum from Eucalyptus leaf litter, Beltraniopsis neolitseae and Acrodontium neolitseae from Neolitsea australiensis, Beltraniella endiandrae from Endiandra introrsa, Phaeophleospora parsoniae from Parsonia straminea, Penicillifer martinii from Cynodon dactylon, Ochroconis macrozamiae from Macrozamia leaf litter, Triposporium cycadicola, Circinotrichum cycadis, Cladosporium cycadicola and Acrocalymma cycadis from Cycas spp. Furthermore, Vermiculariopsiella dichapetali is described from Dichapetalum rhodesicum (Botswana), Ophiognomonia acadiensis from Picea rubens (Canada), Setophoma vernoniae from Vernonia polyanthes and Penicillium restingae from soil (Brazil), Pseudolachnella guaviyunis from Myrcianthes pungens (Uruguay) and Pseudocercospora neriicola from Nerium oleander (Italy). Novelties from Spain include: Dendryphiella eucalyptorum from Eucalyptus globulus, Conioscypha minutispora from dead wood, Diplogelasinospora moalensis and Pseudoneurospora canariensis from soil and Inocybe lanatopurpurea from reforested woodland of Pinus spp. Novelties from France include: Kellermania triseptata from Agave angustifolia, Zetiasplozna acaciae from Acacia melanoxylon, Pyrenochaeta pinicola from Pinus sp. and Pseudonectria rusci from Ruscus aculeatus. New species from China include: Dematiocladium celtidicola from Celtis bungeana, Beltrania pseudorhombica, Chaetopsina beijingensis and Toxicocladosporium pini from Pinus spp. and Setophaeosphaeria badalingensis from Hemerocallis fulva. Novel genera of Ascomycetes include Alfaria from Cyperus esculentus (Spain), Rinaldiella from a contaminated hum...
Severe Verticillium dahliae attacks have occurred in artichoke crops in the Comunidad Valenciana region of eastern-central Spain since the late 1990s. Knowledge of genetic and virulence diversity in the pathogen population is a key factor for the management of the disease through disease risk assessment as well as development and use of resistant cultivars. V. dahliae isolates from artichoke (109 isolates) and cotton (three isolates) in that region were characterized by vegetative compatibility grouping (VCG), and specific polymerase chain reaction assays using three sets of primer pairs that differentiate the cotton-defoliating (D) and -nondefoliating (ND) V. dahliae pathotypes. In all, 35 and 39 V. dahliae isolates representative of the identified VCGs and geographic origins were tested for virulence to artichoke cvs. Nun 6374 and Nun 9444, and cotton cv. Acala SJ-2, respectively. Four VCGs were identified among 107 artichoke isolates, and 2 isolates were heterokaryon self-incompatible: VCG1A (one isolate), VCG2A (31 isolates), VCG2B (72 isolates), and VCG4B (three isolates). The three cotton isolates were VCG1A. Isolates in VCG2B were distributed across the region and were the most prevalent isolates in the northern part. Conversely, 83.9% of isolates in VCG2A were recovered from the southern part of the region. Two subgroups of isolates were identified in VCG2B based on heterokaryon compatibility with either international or local tester isolates, which further showed diversity in the amplification of 334- and 824-bp DNA fragments which are markers of the D and ND pathotypes, respectively. Virulence of isolates to artichoke and cotton correlated with VCG but the pattern of correlation varied with the host. VCG1A isolates from artichoke and cotton induced defoliation in cotton but not in artichoke. Collectively, isolates of VCG2B and VCG4B were the most virulent and isolates of VCG1A or HSI were the least virulent to artichoke; but isolates of VCG1A were more virulent to cotton than those of any other VCG. Also, molecular subgrouping in VCG2B determined by amplification of the 334- and 824-bp markers correlated with virulence of isolates to the two hosts tested.
During the winter of 2003-2004, dieback symptoms were observed on Pinus radiata and P. pinaster in pine nurseries in Asturias (northern Spain). Small groups of affected seedlings appeared randomly distributed throughout the nurseries. The seedlings died rapidly, showing basal needle dieback, stem lesions, resin exudations, and wilting. Isolations from infected material onto potato dextrose agar (PDA) supplemented with 0.5 mg/ml of streptomycin sulfate and Komada's medium consistently yielded Fusarium sp. cultures. The isolates were transferred to PDA and Spezieller Nährstoffarmer agar and incubated at 25°C for 10 days with a 12-h photoperiod. The cultures were identified as Fusarium circinatum Nirenberg & O'Donnell (= Fusarium subglutinans Wollenweb. & Reinking), causal agent of pitch canker disease, on basis of the presence of polyphialides and characteristic sterile, coiled, hyphae (2). To further confirm their identity, a polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) based on histone H3 gene sequences (4) and a test based on the F. circinatum-specific primers, CIRC1A-CIRC4A, which amplifies a 360-bp DNA fragment of the intergenic spacer region of the nuclear ribosomal operon (3), were used. Results obtained with both techniques confirmed the morphological identification of the cultures. A representative culture has been placed in the Centraalbureau voor Schimmelcultures (CBS 117843). The pathogen was isolated only from seedlings of P. radiata and P. pinaster. Other species such as P. nigra, P. sylvestris, and Pseudotsuga menziesii, which were also grown in these nurseries, did not show symptoms. Pathogenicity was confirmed by inoculating 6- to 9-month-old P. radiata and P. pinaster seedlings. Small strips of bark (10 × 1 mm) were cut from the stems and similar sized pieces of PDA colonized by F. circinatum were placed in contact with the open wounds and covered with parafilm. Basal needle dieback was observed 10 days after inoculation that resulted in wilting of the seedlings. F. circinatum was reisolated from the affected stems fulfilling Koch's postulates. Later in the year, symptoms of pitch canker were also observed on 20-year-old P. radiata in one forest plantation in Cantabria (northern Spain). Infected branches and shoots of the trees exudated abundant resin, resulting in resinous cankers. The needles, distal to branch tip infections, wilt, fade to yellow then red, and fall from the tree. Affected trees showed noticeable crown dieback. The isolations from the cankers also yielded F. circinatum cultures that were identified as described above. Although a nonrefereed report appeared in 1998 (1), to our knowledge, this is the first report of F. circinatum on P. radiata and P. pinaster in Spain and in Europe. References: (1) L. D. Dwinell et al. Int. Congr. Plant Pathol. 7th. 3:9, 1998. (2) H. I. Nirenberg and K. O'Donnell. Mycologia 90:434, 1998. (3) W. Schweigkofler et al. Appl. Environ. Microbiol. 70:3512, 2004. (4) E. T. Steenkamp et al. Appl. Environ. Microbiol. 65:3401, 1999.
Five commercial nurseries were sampled in 2007 to evaluate the grapevine nursery propagation process as a source of Petri disease pathogens (Phaeoacremonium spp. and Phaeomoniella chlamydospora). Samples were taken at four stages of the propagation process: pre-grafting hydration tanks, scissors used for cutting buds, grafting machines and peat used to promote root development. All samples were analysed using two different techniques: nested PCR using specific primers for Phaeoacremonium spp. (Pm1/Pm2) and Pa. chlamydospora (Pch1/Pch2); and fungal isolation by culturing on semi-selective medium. Either Phaeoacremonium spp. or Pa. chlamydospora were detected at any of these stages, and more importantly they were viable since they were detected by isolating on culturing medium. Additionally, the importance of grapevine rootstock mother fields as sources of inoculum in the nurseries was studied. Fourteen grapevine rootstock mother fields were surveyed in 2006 and 2007 for the occurrence of fungal trunk pathogens. A total of 16.4% and 30% of the plants sampled in 2006 and 2007, respectively were infected. Petri disease pathogens (Pa. chlamydospora, Phaeoacremonium aleophilum, Pm. parasiticum) and several Botryosphaeriaceae species (Neofusicoccum parvum, Botryosphaeria dothidea, Lasiodiplodia theobromae, N. australe, N. mediterraneum and N. vitifusiforme) and Phomopsis viticola were isolated. This is the first time N. mediterraneum has been isolated from grapevines and the first report of N. australe, N. mediterraneum and N. vitifusiforme in Spain. This work shows that grapevine rootstock mother plants and the propagation process of grapevine plants should be considered as important sources of inoculum for fungal trunk pathogens, and especially of Petri disease pathogens.
Oak decline has been a serious problem in Europe since the beginning of the twentieth century. In south-west Spain, Quercus ilex and Q. suber are the main affected species, and their decline has been associated with Phytophthora cinnamomi. During the last 10 years, a severe decline of Q. ilex and Q. faginea accompanied by a significant decrease in the production of acorns affecting natural regeneration was observed in the eastern part of the Iberian Peninsula. Therefore, the aim of this study was to investigate the possible involvement of Phytophthora spp. in the decline. A forest in the Natural Park 'Carrascar de la Font Roja' in Comunidad Valenciana (eastern Spain), which is dominated by Q. ilex and Q. faginea, was surveyed during 2010-2011. Symptomatic trees showed thinning and dieback of the crown, withering of leaves and death. An extensive loss of both lateral small woody roots and fine roots and callusing or open cankers on suberized roots were observed. Soil samples containing fine roots were baited using both Q. robur leaves and apple fruits. Six Phytophthora species were isolated: P. cryptogea, P. gonapodyides, P. megasperma, P. quercina, P. psychrophila and P. syringae. These are the first records of P. quercina and P. psychrophila on Q. faginea, of P. quercina in Spain and of P. psychrophila in mainland Spain. A soil infestation trial was conducted for 6 months under controlled conditions with 1-year-old seedlings of Q. ilex and Q. faginea. Phytophthora cinnamomi was included in the pathogenicity test for comparison. The results showed that Q. ilex seedlings were generally more susceptible to infection than Q. faginea with P. cinnamomi being the most aggressive pathogen to both oak species. The two most commonly isolated Phytophthora species, P. quercina and P. psychrophila, also proved their pathogenicity towards both Q. ilex and Q. faginea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.