We present new limits on exotic keV-scale physics based on 478 kg d of Majorana Demonstrator commissioning data. Constraints at the 90% confidence level are derived on bosonic dark matter (DM) and solar axion couplings, Pauli exclusion principle violating (PEPV) decay, and electron decay using monoenergetic peak signal-limits above our background. Our most stringent DM constraints are set for 11.8 keV mass particles, limiting gAe < 4.5 × 10 −13 for pseudoscalars and α ′ α < 9.7 × 10 −28 for vectors. We also report a 14.4 keV solar axion coupling limit of g eff AN × gAe < 3.8 × 10 −17 , a 1 2 β 2 < 8.5 × 10 −48 limit on the strength of PEPV electron transitions, and a lower limit on the electron lifetime of τe > 1.2 × 10 24 yr for e − → invisible.PACS numbers: 95.35.+d
a b s t r a c tThe MAJORANA collaboration is constructing the MAJORANA DEMONSTRATOR at the Sanford Underground Research Facility at the Homestake gold mine, in Lead, SD. The apparatus will use Ge detectors, enriched in isotope 76 Ge, to demonstrate the feasibility of a large-scale Ge detector experiment to search for neutrinoless double beta decay. The long half-life of this postulated process requires that the apparatus be extremely low in radioactive isotopes whose decays may produce backgrounds to the search. The radioassay program conducted by the collaboration to ensure that the materials comprising the apparatus are sufficiently pure is described. The resulting measurements from gamma-ray counting, neutron activation and mass spectroscopy of the radioactive-isotope contamination for the materials studied for use in the detector are reported. We interpret these numbers in the context of the expected background for the experiment.
We report the first measurement of the total muon flux underground at the Davis Campus of the Sanford Underground Research Facility at the 4850 ft level. Measurements were performed using the Majorana Demonstrator muon veto system arranged in two different configurations. The measured total flux is (5.31 ± 0.17) × 10 −9 µ/s/cm 2 .
The Majorana Collaboration is searching for the neutrinoless double-beta decay of the nucleus 76 Ge. The Majorana Demonstrator is an array of germanium detectors deployed with the aim of implementing background reduction techniques suitable for a 1-tonne 76 Ge-based search. The ultra low-background conditions require regular calibrations to verify proper function of the detectors. Radioactive line sources can be deployed around the cryostats containing the detectors for regular energy calibrations. When measuring in low-background mode, these line sources have to be stored outside the shielding so they do not contribute to the background. The deployment and the retraction of the source are designed to be controlled by the data acquisition system and do not require any direct human interaction. In this paper, we detail the design requirements and implementation of the calibration apparatus, which provides the event rates needed to define the pulse-shape cuts and energy calibration used in the final analysis as well as data that can be compared to simulations.
A search for Pauli-exclusion-principle-violating K α electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of 5.8 × 10 30 s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of 6.8 × 10 30 s at 90% C.L. It is estimated that the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the a e-mail: gkg@princeton.edu neutrinoless double-beta decay of 76 Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.