Demonstrating improved confinement of energetic ions is one of the key goals of the Wendelstein 7-X (W7-X) stellarator. In the past campaigns, measuring confined fast ions has proven to be challenging. Future deuterium campaigns would open up the option of using fusion-produced neutrons to indirectly observe confined fast ions. There are two neutron populations: 2.45 MeV neutrons from thermonuclear and beam-target fusion, and 14.1 MeV neutrons from DT reactions between tritium fusion products and bulk deuterium. The 14.1 MeV neutron signal can be measured using a scintillating fiber neutron detector, whereas the overall neutron rate is monitored by common radiation safety detectors, for instance fission chambers. The fusion rates are dependent on the slowing-down distribution of the deuterium and tritium ions, which in turn depend on the magnetic configuration via fast ion orbits. In this work, we investigate the effect of magnetic configuration on neutron production rates in W7-X. The neutral beam injection, beam and triton slowing-down distributions, and the fusion reactivity are simulated with the ASCOT suite of codes. The results indicate that the magnetic configuration has only a small effect on the production of 2.45 MeV neutrons from DD fusion and, particularly, on the 14.1 MeV neutron production rates. Despite triton losses of up to 50 %, the amount of 14.1 MeV neutrons produced might be sufficient for a time-resolved detection using a scintillating fiber detector, although only in high-performance discharges.
After completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreed for the limiter configuration employed during the first operational campaign. At power levels of 4 MW central electron densities reached 3 × 1019 m−3, central electron temperatures reached values of 7 keV and ion temperatures reached just above 2 keV. Important physics studies during this first operational phase include a first assessment of power balance and energy confinement, ECRH power deposition experiments, 2nd harmonic O-mode ECRH using multi-pass absorption, and current drive experiments using electron cyclotron current drive. As in many plasma discharges the electron temperature exceeds the ion temperature significantly, these plasmas are governed by core electron root confinement showing a strong positive electric field in the plasma centre.
A significant improvement of plasma parameters in the optimized stellarator W7-X is found after injections of frozen hydrogen pellets. The ion temperature in the post-pellet phase exceeds 3 keV with 5 MW of electron heating and the global energy confinement time surpasses the empirical ISS04-scaling. The plasma parameters realized in such experiments are significantly above those in comparable gas-fuelled discharges. In this paper, we present details of these pellet experiments and discuss the main plasma properties during the enhanced confinement phases. Local power balance is applied to show that the heat transport in post-pellet phases is close to the neoclassical level for the ion channel and is about a factor of two above that level for the combined losses. In comparable gas-fuelled discharges, the heat transport is by about ten times larger than the neoclassical level, and thus is largely anomalous. It is further observed that the improvement in the transport is related to the peaked density profiles that lead to a stabilization of the ion-scale turbulence.
Recent progress in the gyrokinetic theory of stellarator microinstabilities and turbulence simulations is summarised. The simulations have been carried out using two different gyrokinetic codes, the global particle-in-cell code EUTERPE and the continuum code GENE, which operates in the geometry of a flux tube or a flux surface but is local in the radial direction. Ion-temperature-gradient (ITG) and trapped-electron modes are studied and compared with their counterparts in axisymmetric tokamak geometry. Several interesting differences emerge. Because of the more complicated structure of the magnetic field, the fluctuations are much less evenly distributed over each flux surface in stellarators than in tokamaks. Instead of covering the entire outboard side of the torus, ITG turbulence is localised to narrow bands along the magnetic field in regions of unfavourable curvature, and the resulting transport depends on the normalised gyroradius ρ * even in radially local simulations. Trapped-electron modes can be significantly more stable than in typical tokamaks, because of the spatial separation of regions with trapped particles from those with bad magnetic curvature. Preliminary nonlinear simulations in flux-tube geometry suggest differences in the turbulence levels in Wendelstein 7-X and a typical tokamak.
We theoretically assess two mechanisms thought to be responsible for the enhanced performance observed in plasma discharges of the Wendelstein 7-X stellarator experiment fueled by pellet injection. The effects of the ambipolar radial electric field and the electron density peaking on the turbulent ion heat transport are separately evaluated using large-scale gyrokinetic simulations. The essential role of the stellarator magnetic geometry is demonstrated, by comparison with a tokamak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.