Combined measurements of the production and decay rates of the Higgs boson, as well as its couplings to vector bosons and fermions, are presented. The analysis uses the LHC proton–proton collision data set recorded with the CMS detector in 2016 at
, corresponding to an integrated luminosity of 35.9
. The combination is based on analyses targeting the five main Higgs boson production mechanisms (gluon fusion, vector boson fusion, and associated production with a
or
boson, or a top quark-antiquark pair) and the following decay modes:
,
,
,
,
, and
. Searches for invisible Higgs boson decays are also considered. The best-fit ratio of the signal yield to the standard model expectation is measured to be
, assuming a Higgs boson mass of
. Additional results are given for various assumptions on the scaling behavior of the production and decay modes, including generic parametrizations based on ratios of cross sections and branching fractions or couplings. The results are compatible with the standard model predictions in all parametrizations considered. In addition, constraints are placed on various two Higgs doublet models.
Measurements of two- and multi-particle angular correlations in pp collisions at root s = 5, 7, and 13TeV are presented as a function of charged-particle multiplicity. The data, corresponding to integrated luminosities of 1.0 pb(-1) (5 TeV), 6.2 pb(-1) (7 TeV), and 0.7 pb(-1) (13 TeV), were collected using the CMS detector at the LHC. The second-order (v(2)) and third-order (v(3)) azimuthal anisotropy harmonics of unidentified charged particles, as well as v(2) of K-S(0) and Lambda/(Lambda) over bar particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass ordering is observed for the v(2) values of charged hadrons (mostly pions), K-S(0), and Lambda/(Lambda) over bar, with lighter particle species exhibiting a stronger azimuthal anisotropy signal below pT approximate to GeV/c. For 13 TeV data, the v(2) signals are also extracted from four- and six-particle correlations for the first time in pp collisions, with comparable magnitude to those from two-particle correlations. These observations are similar to those seen in pPb and PbPb collisions, and support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions. (C) 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
The observation of the standard model (SM) Higgs boson decay to a pair of bottom quarks is presented. The main contribution to this result is from processes in which Higgs bosons are produced in association with a W or Z boson (VH), and are searched for in final states including 0, 1, or 2 charged leptons and two identified bottom quark jets. The results from the measurement of these processes in a data sample recorded by the CMS experiment in 2017, comprising 41.3 fb −1 of proton-proton collisions at √ s = 13 TeV, are described. When combined with previous VH measurements using data collected at √ s = 7, 8, and 13 TeV, an excess of events is observed at m H = 125 GeV with a significance of 4.8 standard deviations, where the expectation for the SM Higgs boson is 4.9. The corresponding measured signal strength is 1.01 ± 0.22. The combination of this result with searches by the CMS experiment for H → bb in other production processes yields an observed (expected) significance of 5.6 (5.5) standard deviations and a signal strength of 1.04 ± 0.20.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.