A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in √ s = 8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb −1 . Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first-and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and µ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector.
Studies of the spin and parity quantum numbers of the Higgs boson are presented, based on proton–proton collision data collected by the ATLAS experiment at the LHC. The Standard Model spin–parity JP=0+JP=0+ hypothesis is compared with alternative hypotheses using the Higgs boson decays H→γγH→γγ, H→ZZ⁎→4ℓH→ZZ⁎→4ℓ and H→WW⁎→ℓνℓνH→WW⁎→ℓνℓν, as well as the combination of these channels. The analysed dataset corresponds to an integrated luminosity of 20.7 fb−1 collected at a centre-of-mass energy of √s=8TeV. For the H→ZZ⁎→4ℓH→ZZ⁎→4ℓ decay mode the dataset corresponding to an integrated luminosity of 4.6 fb−1 collected at √s=7TeV is included. The data are compatible with the Standard Model JP=0+JP=0+ quantum numbers for the Higgs boson, whereas all alternative hypotheses studied in this Letter, namely some specific JP=0−,1+,1−,2+JP=0−,1+,1−,2+ models, are excluded at confidence levels above 97.8%. This exclusion holds independently of the assumptions on the coupling strengths to the Standard Model particles and in the case of the JP=2+JP=2+ model, of the relative fractions of gluon-fusion and quark–antiquark production of the spin-2 particle. The data thus provide evidence for the spin-0 nature of the Higgs boson, with positive parity being strongly preferre
IntroductionThe discovery of a new particle of mass about 125 GeV in the search for the Standard Model This Letter presents measurements of several properties of the newly observed particle, including its mass, production strengths and couplings to fermions and bosons, using diboson final states 1 : Monte Carlo (MC) samples used to model signal and background processes. The analyses of the three decay channels are presented in Sections 4-6. Measurements of the Higgs boson mass, production properties and couplings are discussed in Section 7. Section 8 is devoted to the conclusions. Data sample and event reconstructionAfter data quality requirements, the integrated luminosities of the samples used for the studies reported here are about 4.7 fb −1 in 2011 and 20.7 fb −1 in 2012, with uncertainties given in Table 1 (determined as described in Ref. [13]). Because of the high LHC peak luminosity (up to 7.7 × 10 33 cm −2 s −1 in 2012) and the 50 ns bunch spacing, the number of proton-proton interactions occurring in the same bunch crossing is large (on average 20.7, up to about 40). This "pile-up" of events requires the use of dedicated algorithms and corrections to mitigate its impact on the reconstruction of e.g. leptons, photons and jets. 0370-2693/
Searches for the electroweak production of charginos, neutralinos and sleptons in final states characterized by the presence of two leptons (electrons and muons) and missing transverse momentum are performed using 20.3 fb −1 of proton-proton collision data at √ s = 8 TeV recorded with the ATLAS experiment at the Large Hadron Collider.No significant excess beyond Standard Model expectations is observed. Limits are set on the masses of the lightest chargino, next-to-lightest neutralino and sleptons for different lightest-neutralino mass hypotheses in simplified models. Results are also interpreted in various scenarios of the phenomenological Minimal Supersymmetric Standard Model.Keywords: Supersymmetry, Hadron-Hadron Scattering The ATLAS collaboration 33 IntroductionSupersymmetry (SUSY) [1][2][3][4][5][6][7][8][9] is a spacetime symmetry that postulates for each Standard Model (SM) particle the existence of a partner particle whose spin differs by one-half unit. The introduction of these new particles provides a potential solution to the hierarchy problem [10][11][12][13]. If R-parity is conserved [14][15][16][17][18], as is assumed in this paper, SUSY particles are always produced in pairs and the lightest supersymmetric particle (LSP) emerges as a stable dark-matter candidate.-1 - JHEP05(2014)071The charginos and neutralinos are mixtures of the bino, winos and higgsinos that are superpartners of the U(1), SU(2) gauge bosons and the Higgs bosons, respectively. Their mass eigenstates are referred to asχ ± i (i = 1, 2) andχ 0 j (j = 1, 2, 3, 4) in the order of increasing masses. Even though the gluinos and squarks are produced strongly in pp collisions, if the masses of the gluinos and squarks are large, the direct production of charginos, neutralinos and sleptons through electroweak interactions may dominate the production of SUSY particles at the Large Hadron Collider (LHC). Such a scenario is possible in the general framework of the phenomenological minimal supersymmetric SM (pMSSM) [19][20][21]. Naturalness suggests that third-generation sparticles and some of the charginos and neutralinos should have masses of a few hundred GeV [22,23]. Light sleptons are expected in gauge-mediated [24][25][26][27][28][29] and anomaly-mediated [30,31] SUSY breaking scenarios. Light sleptons could also play a role in the co-annihilation of neutralinos, allowing a dark matter relic density consistent with cosmological observations [32,33]. This paper presents searches for electroweak production of charginos, neutralinos and sleptons using 20.3 fb −1 of proton-proton collision data with a centre-of-mass energy √ s = 8 TeV collected at the LHC with the ATLAS detector. The searches target final states with two oppositely-charged leptons (electrons or muons) and missing transverse momentum. Similar searches [34,35] SUSY scenariosSimplified models [42] are considered for optimization of the event selection and interpretation of the results. The LSP is the lightest neutralinoχ 0 1 in all SUSY scenarios considered, except in...
This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb −1 of LHC proton-proton collision data taken at centre-of-mass energies of √ s = 7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05 % in most of the detector acceptance, rising to 0.2 % in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2-1 % for electrons with a transverse energy of 10 GeV, and is on average 0.3 % for photons. The detector resolution is determined with a relative inaccuracy of less than 10 % for electrons and photons up to 60 GeV transverse energy, rising to 40 % for transverse energies above 500 GeV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.