Shape coexistence in the light krypton isotopes was studied in two low-energy Coulomb excitation experiments using radioactive 74 Kr and 76 Kr beams from the SPIRAL facility at GANIL. The ground-state bands in both isotopes were populated up to the 8 + state via multi-step Coulomb excitation, and several non-yrast states were observed. Large sets of matrix elements were extracted for both nuclei from the observed γ -ray yields. Diagonal matrix elements were determined by utilizing the reorientation effect. In both isotopes the spectroscopic quadrupole moments for the ground-state bands and the bands based on excited 0 + 2 states are found to have opposite signs. The experimental data are interpreted within a phenomenological two-band mixing model and model-independent quadrupole invariants are deduced for the relevant 0 + states using the complete sets of matrix elements and the formalism of quadrupole sum rules. Configuration mixing calculations based on triaxial Hartree-Fock-Bogolyubov calculations with the Gogny D1S effective interaction have been performed and are compared both with the experimental results and with recent calculations using the Skyrme SLy6 effective interaction and the full generator-coordinate method restricted to axial shapes.
The Coulomb excitation experiment to study electromagnetic properties of the heaviest stable Mo isotope, 100 Mo, was performed using a 76 MeV 32 S beam from the Warsaw cyclotron U-200P. Magnitudes and relative signs of 26 E1, E2, E3, and M1 matrix elements coupling nine low-lying states in 100 Mo were determined using the least-squares code GOSIA. Diagonal matrix elements (related to the spectroscopic quadrupole moments) of the 2 + 1 , 2 + 2 , and 2 + 3 states as well as the 4 + 1 state were extracted. The resulting set of reduced E2 matrix elements was complete and precise enough to obtain, using the quadrupole sum rules approach, quadrupole deformation parameters of 100 Mo in its two lowest 0 + states: ground and excited. The overall deformation of the 0 + 1 and 0 + 2 states in 100 Mo is of similar magnitude, in both cases larger compared to what was found for the neighboring isotopes 96 Mo and 98 Mo. At the same time, the asymetry parameters obtained for both states strongly differ, indicating a triaxial shape of the 100 Mo nucleus in the ground state and a prolate shape in the excited 0 + state. Low-energy quadrupole excitations of the 100 Mo nucleus were studied in the frame of the general quadrupole collective Bohr Hamiltonian model (GBH). The potential energy and inertial functions were calculated using the adiabatic time-dependent Hartree-Fock-Bogoliubov (ATDHFB) method starting from two possible variants of the Skyrme effective interaction: SIII and Sly4. The overall quadrupole deformation parameters resulting from the GBH calculations with the SLy4 variant of the Skyrme interaction are slightly closer to the experimentally obtained values than those obtained using SIII.
The reduced transition probabilities, B E2; 0 gs ! 2 1 , have been measured in the radioactive isotopes 108;106 Sn using subbarrier Coulomb excitation at the REX-ISOLDE facility at CERN. Deexcitation rays were detected by the highly segmented MINIBALL Ge-detector array. The results, B E2; 0 gs ! 2 1 0:222 19 e 2 b 2 for 108 Sn and B E2; 0 gs ! 2 1 0:195 39 e 2 b 2 for 106 Sn were determined relative to a stable 58 Ni target. The resulting B E2 values are 30% larger than shell-model predictions and deviate from the generalized seniority model. This experimental result may point towards a weakening of the N Z 50 shell closure. DOI: 10.1103/PhysRevLett.101.012502 PACS numbers: 23.20.Js, 21.60.Cs, 25.70.De, 27.60.+j Precision measurements in unstable nuclei together with recently developed models of the nucleon-nucleon interaction, stemming from many-body techniques and QCD, show promise to improve our understanding of the finer aspects of the dynamics of the atomic nucleus. One approach to this question is to measure reduced transition probabilities -B E2; 0 gs ! 2 1 -for specific nuclei in the vicinity of a shell closure and to compare these results with calculations based on such models. In particular, one of the pressing questions in nuclear physics today is whether the shell closures, that are well established close to stability, remain so also for isotopes with a more extreme proton-toneutron ratio. Intuitive models, such as the generalized seniority scheme [1], predict that these B E2 values follow a parabolic trend, that peaks at midshell, for a sequence of isotopes between two shell closures. In the following we address the 100 Sn shell closure and consequently present results from measurements in the sequence of neutron-deficient even-mass Sn isotopes. This approach has been made possible by newly developed facilities that produce high-quality radioactive ion beams. Recent measurements in 110;108 Sn [2 -4] consistently deviate from the broken-pair model as given by the generalized seniority scheme and from current large-scale shell-model calculations [2]. Parallel work [4], using intermediate energy Coulomb excitation, suggests a constant trend of the reduced transition probabilities extending to 106 Sn. In this Letter we report results from the first measurements of 108;106 Sn using subbarrier Coulomb excitation. This is the only experiment so far for 106 Sn that has permitted for complete control of the scattering process and thus explicitly fulfills the conditions for safe Coulomb excitation. Our result still deviates significantly from theoretical predictions but indicates a decreasing trend of the B E2 with a decreasing number of valence particles outside of the 100 Sn core. Note that with this Letter three different isotopes have been used for normalization as 112 Sn [2] and 197 Au [4] have been used previously. All three experiments yield similar PRL 101, 012502 (2008)
At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using lowenergy Coulomb excitation. These experiments have resulted in B(E2, 2 74,76 Zn and the determination of the energy of the first excited 2 + 1 states in 78,80 Zn. The zinc isotopes were produced by high-energy proton-(A = 74, 76, 80) and neutron-(A = 78) induced fission of 238 U, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N = 50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, including a recent empirical residual interaction constructed to describe the present experimental data up to 2004 in this region of the nuclear chart.
Abstract. The Miniball germanium detector array has been operational at the REX (Radioactive ion beam EXperiment) post accelerator at the Isotope Separator On-Line facility ISOLDE at CERN since 2001. During the last decade, a series of successful Coulomb excitation and transfer reaction studies have been performed with this array, utilizing the unique and high-quality radioactive ion beams which are available at ISOLDE. In this article, an overview is given of the technical details of the full Miniball setup, including a description of the γ-ray and particle detectors, beam monitoring devices and methods to deal with beam contamination. The specific timing properties of the REX-ISOLDE facility are highlighted to indicate the sensitivity that can be achieved with the full Miniball setup. The article is finalized with a summary of some physics highlights at REX-ISOLDE and the utilization of the Miniball germanium detectors at other facilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.