This publication describes the methods used to measure the centrality of inelastic Pb-Pb collisions at a center-of-mass energy of 2.76 TeV per colliding nucleon pair with ALICE. The centrality is a key parameter in the study of the properties of QCD matter at extreme temperature and energy density, because it is directly related to the initial overlap region of the colliding nuclei. Geometrical properties of the collision, such as the number of participating nucleons and the number of binary nucleon-nucleon collisions, are deduced from a Glauber model with a sharp impact parameter selection and shown to be consistent with those extracted from the data. The centrality determination provides a tool to compare ALICE measurements with those of other experiments and with theoretical calculations.
At su ciently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP) 1 . Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed 2-6 . Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions 7 , is more pronounced for multi-strange baryons. Several e ects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions 8,9 , but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results 10,11 , indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.The production of strange hadrons in high-energy hadronic interactions provides a way to investigate the properties of quantum chromodynamics (QCD), the theory of strongly interacting matter. Unlike up (u) and down (d) quarks, which form ordinary matter, strange (s) quarks are not present as valence quarks in the initial state, yet they are sufficiently light to be abundantly created during the course of the collisions. In the early stages of high-energy collisions, strangeness is produced in hard (perturbative) 2 → 2 partonic scattering processes by flavour creation (gg → ss, qq → ss) and flavour excitation (gs → gs, qs → qs). Strangeness is also created
We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at sqrt[S(NN)] =2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (|η|<0.8) and transverse momentum range 0.2
The centrality dependence of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at ffiffiffiffiffiffiffiffi s NN p ¼ 2:76 TeV is presented. The charged-particle density normalized per participating nucleon pair increases by about a factor of 2 from peripheral (70%-80%) to central (0%-5%) collisions. The centrality dependence is found to be similar to that observed at lower collision energies. The data are compared with models based on different mechanisms for particle production in nuclear collisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.