The formation of a core region with improved electron confinement is reported in the recent full current drive operation of Tore Supra, where the plasma current is sustained with the lower hybrid (LH) wave. Current profile evolution and thermal electron transport coefficients are assessed directly by using the data of the new fast electron bremsstrahlung tomography that provides the most accurate determination of the LH current and power deposition profiles. The spontaneous rise of the core electron temperature observed a few seconds after the application of the LH power is ascribed to a bifurcation towards a state of reduced electron transport. The role of the magnetic shear is invoked to partly stabilize the anomalous electron turbulence. The electron temperature transition occurs when the q-profile evolves towards a non-inductive state with a non-monotonic shape, i.e. when the magnetic shear in the plasma core is reduced to close to zero. The improved core confinement phase is often terminated by a sudden MHD activity when the minimum q approaches 2.
Both ion and electron temperatures in the scrape-off layer (SOL) of the Tore Supra tokamak were measured by a retarding field analyzer during an ohmic density scan. SOL T i was found to be higher than T e by a factor of 4-7. The ion-to-electron temperature ratio τ decreases with increasing density. Core T i and T e measurements in Tore Supra combined with a multi-machine database of τ measurements show that τ > 1 also in the edge of the confined plasma and increases with radius.
This paper describes what we can learn on the regimes of spontaneous electron temperature oscillations discovered in Tore Supra from the analysis of MHD activity. Since the first observations of this oscillating behaviour of plasma equilibrium, and its interpretation as a predator-prey system involving lower hybrid waves power deposition and electron confinement, analysis of MHD modes has confirmed the reality of safety factor profile oscillations. This points towards the importance of rational values of the safety factor in the transition to transport barriers in reversed magnetic shear plasmas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.