This paper describes a new Heterodyne Array Receiver Program (HARP) and Auto‐Correlation Spectral Imaging System (ACSIS) that have recently been installed and commissioned on the James Clerk Maxwell Telescope. The 16‐element focal‐plane array receiver, operating in the submillimetre from 325 to 375 GHz, offers high (three‐dimensional) mapping speeds, along with significant improvements over single‐detector counterparts in calibration and image quality. Receiver temperatures are ∼120 K across the whole band, and system temperatures of ∼300 K are reached routinely under good weather conditions. The system includes a single‐sideband (SSB) filter so these are SSB values. Used in conjunction with ACSIS, the system can produce large‐scale maps rapidly, in one or more frequency settings, at high spatial and spectral resolution. Fully sampled maps of size can be observed in under 1 h. The scientific need for array receivers arises from the requirement for programmes to study samples of objects of statistically significant size, in large‐scale unbiased surveys of galactic and extra‐galactic regions. Along with morphological information, the new spectral imaging system can be used to study the physical and chemical properties of regions of interest. Its three‐dimensional imaging capabilities are critical for research into turbulence and dynamics. In addition, HARP/ACSIS will provide highly complementary science programmes to wide‐field continuum studies and produce the essential preparatory work for submillimetre interferometers such as the Submillimeter Array (SMA) and Atacama Large Millimeter/Submillimeter Array (ALMA).
We describe a Herschel Space Observatory 194-671 μm spectroscopic survey of a sample of 121 local luminous infrared galaxies and report the fluxes of the CO J to J-1 rotational transitions for J 4 13, the [N II] 205 μm line, the [C I] lines at 609 and 370 μm, as well as additional and usually fainter lines. The CO spectral line energy distributions (SLEDs) presented here are consistent with our earlier work, which was based on a smaller sample, that calls for two distinct molecular gas components in general: (i) a cold component, which emits CO lines primarily at J4 and likely represents the same gas phase traced by CO (1−0), and (ii) a warm component, which dominates over the mid-J regime (4<J10) and is intimately related to current star formation. We present evidence that the CO line emission associated with an active galactic nucleus is significant only at J>10. The flux ratios of the two [C I] lines imply modest excitation temperatures of 15-30 K; the [C I] 370 μm line scales more linearly in flux with CO (4−3) than with CO (7−6). These findings suggest that the [C I] emission is predominantly associated with the gas component defined in (i) above. Our analysis of the stacked spectra in different far-infrared (FIR) color bins reveals an evolution of the SLED of the rotational transitions of H O 2 vapor as a function of the FIR color in a direction consistent with infrared photon pumping.
We present our initial results on the CO rotational spectral line energy distribution (SLED) of the J to J−1 transitions from J = 4 up to 13 from Herschel SPIRE spectroscopic observations of 65 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey (GOALS). The observed SLEDs change on average from one peaking at J ≤ 4 to a broad distribution peaking around J ∼ 6−7 as the IRAS 60-to-100 µm color, C(60/100), increases. However, the ratios of a CO line luminosity to the total infrared luminosity, L IR , show the smallest variation for J around 6 or 7. This suggests that, for most LIRGs, ongoing star formation (SF) is also responsible for a warm gas component that emits CO lines primarily in the mid-J regime (5 J 10). As a result, the logarithmic ratios of the CO line luminosity summed over CO (5−4), (6−5), (7−6), (8−7) and (10−9) transitions to L IR , log R midCO , remain largely independent of C(60/100), and show a mean value of −4.13 (≡ log R SF midCO ) and a sample standard deviation of only 0.10 for the SF-dominated galaxies. Including additional galaxies from the literature, we show, albeit with small number of cases, the possibility that galaxies, which bear powerful interstellar shocks unrelated to the current SF, and galaxies, in which an energetic active galactic nucleus contributes significantly to the bolometric luminosity, have their R midCO higher and lower than R SF midCO , respectively.
We present large-area maps of the CO J=3-2 emission obtained at the James Clerk Maxwell Telescope for four spiral galaxies in the Virgo Cluster. We combine these data with published CO J=1-0, 24 µm, and Hα images to measure the CO line ratios, molecular gas masses, and instantaneous gas depletion times. For three galaxies in our sample (NGC 4254, NGC4321, and NGC 4569), we obtain molecular gas masses of 7 × 10 8 − 3 × 10 9 M ⊙ and disk-averaged instantaneous gas depletion times of 1.1-1.7 Gyr. We argue that the CO J=3-2 line is a better tracer of the dense star forming molecular gas than the CO J=1-0 line, as it shows a better correlation with the star formation rate surface density both within and between galaxies. NGC 4254 appears to have a larger star formation efficiency(smaller gas depletion time), perhaps because it is on its first passage through the Virgo Cluster. NGC 4569 shows a large-scale gradient in the gas properties traced by the CO J=3-2/J=1-0 line ratio, which suggests that its interaction with the intracluster medium is affecting the dense star-forming portion of the interstellar medium directly. The fourth galaxy in our sample, NGC 4579, has weak CO J=3-2 emission despite having bright 24 µm emission; however, much of the central luminosity in this galaxy may be due to the presence of a central AGN.
Anomalous Microwave Emission (AME) is a component of diffuse Galactic radiation observed at frequencies in the range ≈ 10-60 GHz. AME was first detected in 1996 and recognised as an additional component of emission in 1997. Since then, AME has been observed by a range of experiments and in a variety of environments. AME is spatially correlated with far-IR thermal dust emission but cannot be explained by synchrotron or free-free emission mechanisms, and is far in excess of the emission contributed by thermal dust emission with the power-law opacity consistent with the observed emission at sub-mm wavelengths. Polarization observations have shown that AME is very weakly polarized ( 1 %). The most natural explanation for AME is rotational emission from ultra-small dust grains ("spinning dust"), first postulated in 1957.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.