Preoperative EEN reduced the risk of postoperative IASCs after operation for ECFs in CD. In addition, age at operation may be another factor of influence.
Impaired cell death program has been noted as one of the hallmarks of chronic lymphocytic leukemia (CLL) and contributes to its accumulation of malignant monoclonal B cells as well as to chemotherapy resistance. A cell can die through the apoptosis or necrosis pathway. Recent investigations suggest that in apoptotic-deficient conditions, such as most types of cancer, a process of programmed necrosis, called necroptosis, prevails. However, the detailed molecular mechanisms underlying this alternative cell death pathway are still not fully understood. Here we demonstrate that CLL cells failed to undergo necroptosis upon stimulation of TNFa combined with pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD). Two core components of necroptotic machine, RIP3 and deubiquitinase cylindromatosis (CYLD), are markedly downregulated in CLL. Moreover, we identified lymphoid enhancer-binding factor 1 (LEF1), a downstream effector of the Wnt/b-catenin pathway, as a transcription repressor of CYLD in CLL. Knocking down LEF1 sensitizes CLL cells to TNFa/zVAD-induced necroptosis. The present investigation provides the first evidence that CLL cells have defects not only in apoptotic program but also in necroptotic signaling. Targeting the key regulators of necroptotic machine, such as LEF1, to restore this pathway may represent a novel approach for CLL treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.