The lifetimes of first excited 2 + , 4 + and 6 + states in 98 Zr were measured with the Recoil-Distance Doppler-Shift method in an experiment performed at GANIL. Excited states in 98 Zr were populated using the fission reaction between a 6.2 MeV/u 238 U beam and a 9 Be target. The γ rays were detected with the EXOGAM array in correlation with the fission fragments identified in mass and atomic number in the VAMOS++ spectrometer. Our result shows very small B(E2; 2 + 1 → 0 + 1 ) value in 98 Zr thereby confirming the very sudden onset of collectivity at N = 60. The experimental results are compared to large-scale Monte Carlo Shell model and beyond mean field calculations. The present results indicate coexistence of two additional deformed shapes in this nucleus along with the spherical ground state.The study of various modes of excitations and the associated evolution of nuclear shapes along spin and isospin axes in atomic nuclei is one of the fundamental quests in nuclear physics. While nuclei with "magic numbers" of protons and/or neutrons have spherical ground states, as one moves away, the polarizing effect of added nucleons leads to deformation. Throughout the nuclear landscape, this onset of deformation is usually a gradual process, however in neutron rich nuclei around mass A ∼ 100 the shape change is rather drastic and abrupt. The ground states of Sr and Zr isotopes with N ranging from the magic number N = 50 up to N < 60 are weakly deformed, however, they undergo a rapid shape transition from nearly spherical to well deformed prolate deformations as N = 60 is approached. The sudden nature of shape transition in Sr and Zr isotopes is evident from the abrupt changes in the two neutron separation energies [1] and mean-square charge radii [2, 3], but also from the excitation energies of 2 + 1 states and B(E2) values [4]. On the other hand, in isotopes with Z ≥ 42 the shape change is rather gradual [1,5] showing also characteristic signatures of triaxiality. This strong dependence of the observed spectroscopic properties, both on the number of protons and neutrons, makes the neutron-rich A ∼ 100 nuclei an excellent mass region for testing various theoretical models.Many experimental and theoretical studies have already been reported on the structure of these nuclei. More specifically for the Zr isotopes, the onset of deformation at N = 60 has been described by a number of theoretical models [6][7][8][9][10][11][12][13][14][15][16][17][18][19], however, none of the models have been able to successfully reproduce the aforementioned rapid change. Very recently, the abrupt shape changes were correctly described by large-scale Monte-Carlo Shell Model (MCSM) calculations [20,21]. In the so-called type-II shell evolution scenario, the (prolate) deformed states in the isotopes with N ≥ 60 are associated with proton excitations to the 0g 9/2 orbital. Driven by the central and tensor components of the effective (proton-neutron) interactions, these excitations result in a lowering and subsequent filling of the neutron 0g ...
The neutron-rich nuclei 94;96 Kr were studied via projectile Coulomb excitation at the REX-ISOLDE facility at CERN. Level energies of the first excited 2 þ states and their absolute E2 transition strengths to the ground state are determined and discussed in the context of the Eð2 þ 1 Þ and BðE2; 2 þ 1 ! 0 þ 1 Þ systematics of the krypton chain. Contrary to previously published results no sudden onset of deformation is observed. This experimental result is supported by a new proton-neutron interacting boson model calculation based on the constrained Hartree-Fock-Bogoliubov approach using the microscopic Gogny-D1M energy density functional. DOI: 10.1103/PhysRevLett.108.062701 PACS numbers: 25.70.De, 27.60.+j, 29.30.Kv, 29.38.Gj Since the availability of high-intensity radioactive ion beams, the extension of the concept of quantum phase transitions to exotic nuclei is of great interest in nuclear physics [1]. Quantum phase transitions occur in atomic nuclei as a function of the number of protons or neutrons and describe changes of the ground-state shapes [2]. The so-called A % 100 mass region of the nuclear chart around 100 Zr is one of the most popular regions for the study of this phenomenon since the zirconium (Z ¼ 40) and strontium (Z ¼ 38) isotopes undergo a shape transition from almost spherical to strongly deformed shapes when going from neutron number N ¼ 58 to N ¼ 60 [3][4][5][6][7]. This
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.