Abstract.A novel approach for the joint retrieval of aerosol optical depth (AOD) and aerosol type, using Meteosat Second Generation -Spinning Enhanced Visible and Infrared Imagers (MSG/SEVIRI) observations in two solar channels, is presented. The retrieval is based on a Time Series (TS) technique, which makes use of the two visible bands at 0.6 µm and 0.8 µm in three orderly scan times (15 min interval between two scans) to retrieve the AOD over land. Using the radiative transfer equation for plane-parallel atmosphere, two coupled differential equations for the upward and downward fluxes are derived. The boundary conditions for the upward and downward fluxes at the top and at the bottom of the atmosphere are used in these equations to provide an analytic solution for the AOD. To derive these fluxes, the aerosol single scattering albedo (SSA) and asymmetry factor are required to provide a solution. These are provided from a set of six pre-defined aerosol types with the SSA and asymmetry factor. We assume one aerosol type for a grid of 1 • ×1 • and the surface reflectance changes little between two subsequent observations. A k-ratio approach is used in the inversion to find the best solution of atmospheric properties and surface reflectance. The k-ratio approach assumes that the surface reflectance is little influenced by aerosol scattering at 1.6 µm and therefore the ratio of surface reflectances in the solar band for two subsequent observations can be wellapproximated by the ratio of the reflectances at 1.6 µm. A further assumption is that the surface reflectance varies only slightly over a period of 30 min. The algorithm makes use of numerical minimisation routines to obtain the optimal solution of atmospheric properties and surface reflectance by selection of the most suitable aerosol type from pre-defined sets.A detailed analysis of the retrieval results shows that it is suitable for AOD retrieval over land from SEVIRI data. Six AErosol RObotic NETwork (AERONET) sites with different surface types are used for detailed analysis and 42 other AERONET sites are used for validation. From 445 collocations representing stable and homogeneous aerosol type, we find that >75 % of the MSG-retrieved AOD at 0.6 and 0.8 µm values compare favourably with AERONET observed AOD values, within an error envelope of ± 0.05 ± 0.15τ and a high correlation coefficient (R>0.86). The AOD datasets derived Published by Copernicus Publications on behalf of the European Geosciences Union. L. Mei et al.: Retrieval of aerosol optical depth over landusing the TS method with SEVIRI data is also compared with collocated AOD products derived from NASA TERRA and AQUA MODIS (The Moderate-resolution Imaging Spectroradiometer) data using the Dark Dense Vegetation (DDV) method and the Deep Blue algorithms. Using the TS method, the AOD could be retrieved for more pixels than with the NASA Deep Blue algorithm. This method is potentially also useful for surface reflectance retrieval using SEVIRI observations. The current paper focuses on AOD retrieval ...
HuBi 1 has been proposed to be member of the rare class of born-again planetary nebulae (PNe), i.e., its central star experienced a very late thermal pulse and ejected highly processed material at high speeds inside the old hydrogen-rich PN. In this Letter we present GTC MEGARA integral field spectroscopic observations of the innermost regions of HuBi 1 at high spectral resolution ≃16 km s−1 and multi-epoch subarcsecond images obtained ≃12 yr apart. The analysis of these data indicates that the inner regions of HuBi 1 were ejected ≃200 yr ago and expand at velocities ≃300 km s−1, in excellent agreement with the born-again scenario. The unprecedented tomographic capabilities of the GTC MEGARA high-dispersion observations used here reveal that the ejecta in HuBi 1 has a shell-like structure, in contrast to the disrupted disk and jet morphology of the ejecta in other born-again PNe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.