Human acetylcholinesterase (AChE) is a significant target for therapeutic drugs. Here we present high resolution crystal structures of human AChE, alone and in complexes with drug ligands; donepezil, an Alzheimer's disease drug, binds differently to human AChE than it does to Torpedo AChE. These crystals of human AChE provide a more accurate platform for further drug development than previously available.
SummaryNeurotensin (NT) is a 13 amino acid peptide that functions as both a neurotransmitter and a hormone through activation of the neurotensin receptor NTS1, a G protein-coupled receptor (GPCR). In the brain, NT modulates activity of dopaminergic systems, opioid-independent analgesia, and the inhibition of food intake, and in the gut NT regulates a range of digestive processes. Here we present the structure at 2.8 Å resolution of NTS1 in an active-like state, bound to NT8-13, the C terminal portion of NT responsible for agonist-induced activation of the receptor. The peptide agonist binds to NTS1 in an extended conformation nearly perpendicular to the membrane plane with the C-terminus oriented towards the receptor core. Our findings provide the first insight into the binding mode of a peptide agonist to a GPCR and may support the development of non-peptide ligands that could be useful in the treatment of neurological disorders, cancer and obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.