The aim of this study was to determine the influence of an obesity treatment program on the gut microbiota and body weight of overweight adolescents. Thirty‐six adolescents (13–15 years), classified as overweight according to the International Obesity Task Force BMI criteria, were submitted to a calorie‐restricted diet (10–40%) and increased physical activity (15–23 kcal/kg body weight/week) program over 10 weeks. Gut bacterial groups were analyzed by quantitative real‐time PCR before and after the intervention. A group of subjects (n = 23) experienced >4.0 kg weight loss and showed significant BMI (P = 0.030) and BMI z‐score (P = 0.035) reductions after the intervention, while the other group (n = 13) showed <2.0 kg weight loss. No significant differences in dietary intake were found between both groups. In the whole adolescent population, the intervention led to increased Bacteroides fragilis group (P = 0.001) and Lactobacillus group (P = 0.030) counts, and to decreased Clostridium coccoides group (P = 0.028), Bifidobacterium longum (P = 0.031), and Bifidobacterium adolescentis (P = 0.044) counts. In the high weight–loss group, B. fragilis group and Lactobacillus group counts also increased (P = 0.001 and P = 0.007, respectively), whereas C. coccoides group and B. longum counts decreased (P = 0.001 and P = 0.044, respectively) after the intervention. Total bacteria, B. fragilis group and Clostridium leptum group, and Bifidobacterium catenulatum group counts were significantly higher (P < 0.001–0.036) while levels of C. coccoides group, Lactobacillus group, Bifidobacterium, Bifidobacterium breve, and Bifidobacterium bifidum were significantly lower (P < 0.001–0.008) in the high weight–loss group than in the low weight–loss group before and after the intervention. These findings indicate that calorie restriction and physical activity have an impact on gut microbiota composition related to body weight loss, which also seem to be influenced by the individual's microbiota.
The aim of the study was to establish the best cut-off value for the homeostatic model assessment (HOMA) index in identifying children and adolescents with the metabolic syndrome. The study included 72 non-obese and 68 obese children aged 7 to 16 years. Obesity is defined using the criteria proposed by Cole et al., being included as metabolic syndrome variables waist circumference, systolic blood pressure, diastolic blood pressure and seric values of glucose, uric acid, fasting insulin, leptin, triglycerides and HDL-cholesterol. Children were considered as having the metabolic syndrome when four or more characteristics showed abnormal values. The HOMA index was calculated as the product of the fasting plasma insulin level (microU/mL) and the fasting plasma glucose level (mmol/L), divided by 22.5. HOMA index cut-offs from the 5th to the 95th percentile were used. A receiver operating characteristic (ROC) curve was generated using the different HOMA cut-offs for the screening of the metabolic syndrome. The areas under the ROC curve, 95% confidence intervals, and the point to the ROC curve closest to 1, were calculated. The area under the ROC curve was 0.863 (95% C.I.: 0.797, 0.930). The point closest to 1 corresponds to the 60th percentile of the HOMA index distribution in our sample. HOMA index value at the 60th percentile was 2.28. Cut-off values corresponding to a range of HOMA index from the 50 to the 75 percentile, showed similar distances to 1. HOMA index values for percentiles 50 to 75 ranged from 2.07 to 2.83. In conclusion, HOMA index could be a useful tool to detect children and adolescents with the metabolic syndrome. HOMA cut-off values need to be defined in the paediatric population; however, values near to 3 seem to be adequate.
INTRODUCTION:Adolescence is a decisive period in human life in which important body composition changes occur. Increase of total body mass and its relative distribution are mainly related to gender and pubertal development. OBJECTIVE: This review explores the specific measurements that may be used in this age group to assess excess body fat and to define obesity and overweight. RESULTS: Identification of subjects at risk for adiposity requires simple anthropometric cutoffs for the screening of overweight and obesity. In this context, BMI criterion is the most frequently used but, in spite of its high sensitivity and specificity, an important number of adolescents classified as overweight or obese do not have really high adiposity (32.1% of females and 42% of males). Excess total body fat and intra-abdominal visceral fat are related to metabolic abnormalities that increase the risk of cardiovascular diseases. Waist circumference seems to be the best simple anthropometric predictor for the screening of the metabolic syndrome in children and adolescents. CONCLUSIONS: Early identification of adolescents at risk for adiposity and its related metabolic complications requires reliable, simple and specific measures of excess body fat for this age group.
In recent years, epigenetic markers emerged as a new tool to understand the influence of lifestyle factors on obesity phenotypes. Adolescence is considered an important epigenetic window over a human's lifetime. The objective of this work was to explore baseline changes in DNA methylation that could be associated with a better weight loss response after a multidisciplinary intervention program in Spanish obese or overweight adolescents. Overweight or obese adolescents (n=107) undergoing 10 wk of a multidisciplinary intervention for weight loss were assigned as high or low responders to the treatment. A methylation microarray was performed to search for baseline epigenetic differences between the 2 groups (12 subjects/group), and MALDI‐TOF mass spectrometry was used to validate (n=107) relevant CpG sites and surrounding regions. After validation, 5 regions located in or near AQP9, DUSP22, HIPK3, TNNT1, and TNNI3 genes showed differential methylation levels between high and low responders to the multidisciplinary weight loss intervention. Moreover, a calculated methylation score was significantly associated with changes in weight, BMI‐SDS, and body fat mass loss after the treatment. In summary, we have identified 5 DNA regions that are differentially methylated depending on weight loss response. These methylation changes may help to better understand the weight loss response in obese adolescents.—Moleres, A., Campión, J., Milagro, F. I., Marcos, A., Campoy, C., Garagorri, J. M., Gómez‐Martínez, S., Martínez, J. A., Azcona‐Sanjulián, M. C., Martí, A. Differential DNA methylation patterns between high and low responders to a weight loss intervention in overweight or obese adolescents: the EVASYON study. FASEB J. 27, 2504–2512 (2013). http://www.fasebj.org
These findings suggest that promoting MVPA may be have a beneficial effect on attention capacity, an important component of cognition, in adolescents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.