The study of stellar populations in galaxies is entering a new era with the availability of large and high‐quality data bases of both observed galactic spectra and state‐of‐the‐art evolutionary synthesis models. In this paper we investigate the power of spectral synthesis as a means to estimate the physical properties of galaxies. Spectral synthesis is nothing more than the decomposition of an observed spectrum in terms of a superposition of a base of simple stellar populations of various ages and metallicities, producing as output the star formation and chemical histories of a galaxy, its extinction and velocity dispersion. Our implementation of this method uses the recent models of Bruzual & Charlot and observed spectra in the 3650–8000 Å range. The reliability of this approach is studied by three different means: (1) simulations, (2) comparison with previous work based on a different technique, and (3) analysis of the consistency of results obtained for a sample of galaxies from the Sloan Digital Sky Survey (SDSS). We find that spectral synthesis provides reliable physical parameters as long as one does not attempt a very detailed description of the star formation and chemical histories. Robust and physically interesting parameters are obtained by combining the (individually uncertain) strengths of each simple stellar population in the base. In particular, we show that, besides providing excellent fits to observed galaxy spectra, this method is able to recover useful information on the distributions of stellar ages and, more importantly, stellar metallicities. Stellar masses, velocity dispersion and extinction are also found to be accurately retrieved for realistic signal‐to‐noise ratios. We apply this synthesis method to a volume‐limited sample of 50 362 galaxies from the SDSS Data Release 2, producing a catalogue of stellar population properties. Emission lines are also studied, their measurement being performed after subtracting the computed starlight spectrum from the observed one. A comparison with recent estimates of both observed and physical properties of these galaxies obtained by other groups shows good qualitative and quantitative agreement, despite substantial differences in the methods of analysis. The confidence in the present method is further strengthened by several empirical and astrophysically reasonable correlations between synthesis results and independent quantities. For instance, we report the existence of strong correlations between stellar and nebular metallicities, stellar and nebular extinctions, mean stellar age and equivalent width of Hα and 4000‐Å break, and between stellar mass and velocity dispersion.
We study the evolution of 82302 star-forming (SF) galaxies from the SDSS. Our main goals are to explore new ways of handling star formation histories (SFH) obtained with our publicly available spectral synthesis code STARLIGHT, and apply them to investigate how SFHs vary as a function of nebular metallicity (Zneb). Our main results are: (1) A conventional correlation analysis shows how global properties such as luminosity, mass, dust content, mean stellar metallicity and mean stellar age relate to Zneb. (2) We present a simple formalism which compresses the results of the synthesis into time-dependent star formation rates (SFR) and mass assembly histories. (3) The current SFR derived from the population synthesis and that from H-alpha are shown to agree within a factor of two. Thus we now have a way to estimate SFR in AGN hosts, where the H-alpha method cannot be applied. (4) Fully time-dependent SFHs are derived for all galaxies and averaged over six Zneb bins spanning the entire SF wing in the [OIII]/H-beta X [NII]/H-alpha diagram. (5) We find that SFHs vary systematically along the SF sequence, such that low-Zneb systems evolve slower and are currently forming stars at a higher relative rate. (6) At any given time, the distribution of specific SFRs for galaxies within a Zneb-bin is broad and roughly log-normal. (7) The same results are found grouping galaxies in stellar mass (M*) or surface mass density (S*) bins. (8) The overall pattern of SFHs as a function of Zneb, M* or S* is robust against changes in selection criteria, choice of evolutionary synthesis models for the spectral fits, and differential extinction effects. (Abridged)Comment: Accepted for publication in MNRA
We present the largest and most homogeneous catalog of H ii regions and associations compiled so far. The catalog comprises more than 7000 ionized regions, extracted from 306 galaxies observed by the CALIFA survey. We describe the procedures used to detect, select, and analyze the spectroscopic properties of these ionized regions. In the current study we focus on characterizing of the radial gradient of the oxygen abundance in the ionized gas, based on the study of the deprojected distribution of H ii regions. We found that all galaxies without clear evidence of an interaction present a common gradient in the oxygen abundance, with a characteristic slope of α O/H = −0.1 dex/r e between 0.3 and 2 disk effective radii (r e ), and a scatter compatible with random fluctuations around this value, when the gradient is normalized to the disk effective radius. The slope is independent of morphology, the incidence of bars, absolute magnitude, or mass. Only those galaxies with evidence of interactions and/or clear merging systems present a significantly shallower gradient, consistent with previous results. The majority of the 94 galaxies with H ii regions detected beyond two disk effective radii present a flattening in the oxygen abundance. The flattening is statistically significant. We cannot provide a conclusive answer regarding the origin of this flattening. However, our results indicate that its origin is most probably related to the secular evolution of galaxies. Finally, we find a drop/truncation of the oxygen abundance in the inner regions for 26 of the galaxies. All of them are non-interacting, mostly unbarred Sb/Sbc galaxies. This feature is associated with a central star-forming ring, which suggests that both features are produced by radial gas flows induced by resonance processes. Our result suggests that galaxy disks grow inside-out, with metal enrichment driven by the local star formation history and with a small variation galaxy-by-galaxy. At a certain galactocentric distance, the oxygen abundance seems to be correlated well with the stellar mass density and total stellar mass of the galaxies, independently of other properties of the galaxies. Other processes, such as radial mixing and inflows/outflows seem to have a limited effect on shaping of the radial distribution of oxygen abundances, although they are not ruled out.
We revisit the bimodal distribution of the galaxy population commonly seen in the local universe. Here, we address the bimodality observed in galaxy properties in terms of spectral synthesis products, such as mean stellar ages and stellar masses, derived from the application of this powerful method to a volume-limited sample, with magnitude limit cut-off M(r ) = −20.5, containing about 50 000 luminous galaxies from the Sloan Digital Sky Survey (SDSS) Data Release 2 (DR2). In addition, galaxies are classified according to their emission-line properties in three distinct spectral classes: star-forming galaxies, with young stellar populations; passive galaxies, dominated by old stellar populations; and hosts of active nuclei, which comprise a mix of young and old stellar populations. We show that the extremes of the distribution of some galaxy properties, essentially galaxy colours, 4000 Å break index and mean stellar ages, are associated to star-forming galaxies at one side, and passive galaxies at another. We find that the mean light-weighted stellar age of galaxies is directly responsible for the bimodality seen in the galaxy population. The stellar mass, in this view, has an additional role since most of the star-forming galaxies present in the local universe are low-mass galaxies. Our results also give support to the existence of a 'downsizing' in galaxy formation, where massive galaxies seen nowadays have stellar populations formed at early times.
We studied the global and local M-Z relation based on the first data available from the CALIFA survey (150 galaxies). This survey provides integral field spectroscopy of the complete optical extent of each galaxy (up to 2−3 effective radii), with a resolution high enough to separate individual H ii regions and/or aggregations. About 3000 individual H ii regions have been detected. The spectra cover the wavelength range between [OII]3727 and [SII]6731, with a sufficient signal-to-noise ratio to derive the oxygen abundance and star-formation rate associated with each region. In addition, we computed the integrated and spatially resolved stellar masses (and surface densities) based on SDSS photometric data. We explore the relations between the stellar mass, oxygen abundance and star-formation rate using this dataset. We derive a tight relation between the integrated stellar mass and the gas-phase abundance, with a dispersion lower than the one already reported in the literature (σ Δlog (O/H) = 0.07 dex). Indeed, this dispersion is only slightly higher than the typical error derived for our oxygen abundances. However, we found no secondary relation with the star-formation rate other than the one induced by the primary relation of this quantity with the stellar mass. The analysis for our sample of ∼3000 individual H ii regions confirms (i) a local mass-metallicity relation and (ii) the lack of a secondary relation with the star-formation rate. The same analysis was performed with similar results for the specific star-formation rate. Our results agree with the scenario in which gas recycling in galaxies, both locally and globally, is much faster than other typical timescales, such like that of gas accretion by inflow and/or metal loss due to outflows. In essence, late-type/disk-dominated galaxies seem to be in a quasi-steady situation, with a behavior similar to the one expected from an instantaneous recycling/closed-box model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.