The chemical erosion of carbon in interaction with a hydrogen plasma has been studied in detail in ion beam experiments, and erosion yield values are available as a function of ion energy and surface temperature. However, the conditions in the ITER divertor cannot be simulated by ion beam experiments, especially as far as ion flux is concerned.Therefore, a joint attempt was made through the EU Task Force on plasma-wall interaction and the international tokamak physics activity involving seven different fusion devices and plasma simulators to clarify the flux dependence. For each data point the local plasma conditions were normalized to an impact energy of 30 eV, care was taken to select data for a surface temperature close to the maximum yield or room temperature and the calibration of the diagnostic was performed in situ. Through this procedure the previous large scatter was significantly reduced, revealing a clear trend for a decreasing yield with increasing ion flux, . After the attribution of an error to each data point a fit using Bayesian probability analysis was performed, yielding a decrease in the erosion yield with −0.54 at high ion fluxes.
International audienceCode development to solve numerically the model equations of diffusion and trapping of hydrogen in metals. Parametrization of the model trapping parameters (detrapping energies and density): fitting of experimental TDS spectrum. Confrontation model/experiment: evolution of retention with fluence and implantation temperature. Investigation of period of rest between implantation and TDS on retention and depth profile. a b s t r a c t Relevant parameters for trapping of Hydrogen Isotopes (HIs) in polycrystalline tungsten are determined with the MHIMS code (Migration of Hydrogen Isotopes in MaterialS) which is used to reproduce Thermal Desorption Spectrometry experiments. Three types of traps are found: two intrinsic traps (detrapping energy of 0.87 eV and 1.00 eV) and one extrinsic trap created by ion irradiation (detrapping energy of 1.50 eV). Then MHIMS is used to simulate HIs retention at different fluences and different implantation temperatures. Simulation results agree well with experimental data. It is shown that at 300 K the retention is limited by diffusion in the bulk. For implantation temperatures above 500 K, the retention is limited by trap creation processes. Above 600 K, the retention drops by two orders of magnitude as compared to the retention at 300 K. With the determined detrapping energies, HIs outgassing at room temperature is predicted. After ions implantation at 300 K, 45% of the initial retention is lost to vacuum in 300 000 s while during this time the remaining trapped HIs diffuse twice as deep into the bulk
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.