IGF-I is a key factor in intrauterine development and postnatal growth and metabolism. The secretion of IGF-I in utero is not dependent on GH, whereas in childhood and adult life, IGF-I secretion seems to be mainly controlled by GH, as revealed from studies on patients with GHRH receptor and GH receptor mutations. In a 55-yr-old male, the first child of consanguineous parents, presenting with severe intrauterine and postnatal growth retardation, microcephaly, and sensorineural deafness, we found a homozygous G to A nucleotide substitution in the IGF-I gene changing valine 44 into methione. The inactivating nature of the mutation was proven by functional analysis demonstrating a 90-fold reduced affinity of recombinantly produced for the IGF-I receptor. Additional investigations revealed osteoporosis, a partial gonadal dysfunction, and a relatively well-preserved cardiac function. Nine of the 24 relatives studied carried the mutation. They had a significantly lower birth weight, final height, and head circumference than noncarriers. In conclusion, the phenotype of our patient consists of severe intrauterine growth retardation, deafness, and mental retardation, reflecting the GH-independent secretion of IGF-I in utero. The postnatal growth pattern, similar to growth of untreated GH-deficient or GH-insensitive children, is in agreement with the hypothesis that IGF-I secretion in childhood is mainly GH dependent. Remarkably, IGF-I deficiency is relatively well tolerated during the subsequent four decades of adulthood. IGF-I haploinsufficiency results in subtle inhibition of intrauterine and postnatal growth.
Background: Traditionally, measurement of plasma IGF-I and more recently of IGFBP-3 are used to distinguish GHD from idiopathic short stature in slowly growing children, using a single blood sample. In earlier studies it was claimed that IGFBP-3 was superior to IGF-I, but more recently doubts around this claim have arisen. The role of serum IGF-II has never been studied extensively. On theoretical grounds, it can also be hypothesized that molar ratios of these peptides might be of additional value. Design: Retrospective, multicentre, cohort study. Patients: 96 children evaluated for short stature. Methods: Serum IGF-I, IGF-II, IGFBP-3 and various molar ratios were, after correction for age and sex using SD scores, compared to the maximum serum GH peak after two standard provocation tests using four different methods (t-test, χ2, likelihood ratios and ROC curves). In addition, the correlations between these parameters and the short-term (1 year) and long-term (3 years) response to GH therapy were calculated. Results: IGF-I performed better than IGFBP-3, but the best results were achieved by the molar ratio IGF-I:IGF-II. However, IGFBP-3 correlated better with the short-term response to GH therapy than IGF-I or the ratios, and none of the parameters investigated was found to be related to the response of long-term GH therapy.
These two patients support the key role for IGF-I in intrauterine and postnatal growth. The different phenotypes of these and earlier described patients may be associated with variability in IGF-I signaling. The degree of intrauterine growth retardation may be partially determined by the presence or absence of maternal IGF-I resistance.
The clinical presentation of these patients has clear similarities with previously reported cases with a terminal 1q deletion. Corpus callosum abnormalities were present in 10 of our patients. The AKT3 gene has been reported as an important candidate gene causing this abnormality. However, through detailed molecular analysis of the deletion sizes in our patient cohort, we were able to delineate the critical region for corpus callosum abnormalities to a 360 kb genomic segment which contains four possible candidate genes, but excluding the AKT3 gene.
The majority of insulin-like growth factor (IGF)-I and IGF-II circulate in the serum as a complex with the insulin-like growth factor binding protein (IGFBP)-3 or IGFBP-5, and an acid-labile subunit (ALS). The function of ALS is to prolong the half-life of the IGF-I-IGFBP-3/IGFBP-5 binary complexes. Fourteen different mutations of the human IGFALS gene have been identified in 17 patients, suggesting that ALS deficiency may be prevalent in a subset of patients with extraordinarily low serum levels of IGF-I and IGFBP-3 that remain abnormally low upon growth hormone stimulation. Postnatal growth was clearly affected. Commonly, the height standard deviation score before puberty was between –2 and –3, and approximately 1.4 SD shorter than the midparental height SDS. Pubertal delay was found in 50% of the patients. Circulating IGF-II, IGFBP-1, -2 and -3 levels were reduced, with the greatest reduction observed for IGFBP-3. Insulin insensitivity was a common finding, and some patients presented low bone mineral density. Human ALS deficiency represents a unique condition in which the lack of ALS proteins results in the disruption of the entire IGF circulating system. Despite a profound circulating IGF-I deficiency, there is only a mild impact on postnatal growth. The preserved expression of locally produced IGF-I might be responsible for the preservation of linear growth near normal limits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.