Daily use of aspirin is associated with a significant reduction in the incidence of colorectal adenomas in patients with previous colorectal cancer.
BACKGROUND MicroRNAs (miRNAs) are RNA molecules that are involved in the regulation of many cellular processes, including those related to human cancers. The aim of this study was to determine, as a proof of principle, whether specific candidate miRNAs could be detected in fine-needle aspirate (FNA) biopsies of pancreatic ductal adenocarcinoma (PDAC) and could accurately differentiate malignant from benign pancreatic tissues. METHODS We used TaqMan® assays to quantify miRNA levels in FNA samples collected in RNARetain (n = 16) and compared the results with a training set consisting of frozen macrodissected pancreatic samples (n = 20). RESULTS Quantitative reverse-transcription PCR analysis confirmed that miRNA levels are affected in PDAC FNAs and correlate well with the changes observed in the training set of frozen pancreatic samples. Analysis of the amounts produced for a few specific miRNAs enabled identification of PDAC samples. The combination of miR-196a and miR-217 biomarkers further improved the ability to distinguish between healthy tissue, PDAC, and chronic pancreatitis in the training set (P = 8.2 × 10−10), as well as segregate PDAC FNA samples from other FNA samples (P = 1.1 × 10−5). Furthermore, we showed that miR-196a production is likely specific to PDAC cells and that its incidence paralleled the progression of PDAC. CONCLUSIONS To the best of our knowledge, this study is the first to evaluate the diagnostic potential of miRNAs in a clinical setting and has shown that miRNA analysis of pancreatic FNA biopsy samples can aid in the pathologic evaluation of suspicious cases and may provide a new strategy for improving the diagnosis of pancreatic diseases.
Purpose Patients with advanced pancreatic adenocarcinoma have a poor prognosis and limited second-line treatment options. Evidence suggests a role for the Janus kinase (JAK)/signal transducer and activator of transcription pathway in the pathogenesis and clinical course of pancreatic cancer. Patients and Methods In this double-blind, phase II study, patients with metastatic pancreatic cancer who had experienced treatment failure with gemcitabine were randomly assigned 1:1 to the JAK1/JAK2 inhibitor ruxolitinib (15 mg twice daily) plus capecitabine (1,000 mg/m2 twice daily) or placebo plus capecitabine. The primary end point was overall survival (OS); secondary end points included progression-free survival, clinical benefit response, objective response rate, and safety. Prespecified subgroup analyses evaluated treatment heterogeneity and efficacy in patients with evidence of inflammation. Results In the intent-to-treat population (ruxolitinib, n = 64; placebo, n = 63), the hazard ratio was 0.79 (95% CI, 0.53 to 1.18; P = .25) for OS and was 0.75 (95% CI, 0.52 to 1.10; P = .14) for progression-free survival. In a prespecified subgroup analysis of patients with inflammation, defined by serum C-reactive protein levels greater than the study population median (ie, 13 mg/L), OS was significantly greater with ruxolitinib than with placebo (hazard ratio, 0.47; 95% CI, 0.26 to 0.85; P = .011). Prolonged survival in this subgroup was supported by post hoc analyses of OS that categorized patients by the modified Glasgow Prognostic Score, a systemic inflammation–based prognostic system. Grade 3 or greater adverse events were observed with similar frequency in the ruxolitinib (74.6%) and placebo (81.7%) groups. Grade 3 or greater anemia was more frequent with ruxolitinib (15.3%; placebo, 1.7%). Conclusion Ruxolitinib plus capecitabine was generally well tolerated and may improve survival in patients with metastatic pancreatic cancer and evidence of systemic inflammation.
Introduction Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy. Diagnosis and management of PDAC are hampered by the absence of sensitive and specific disease biomarkers. MicroRNAs are non-coding regulatory RNAs involved in initiation and progression of human cancers. In this study we sought to determine whether miR-10b could serve as a biomarker for PDAC. Methods miRNA expression was characterized by fluorescence-based in situ hybridization (ISH) using Locked Nucleic Acid (LNA)-modified DNA probes against miR-10b, miR-21, miR-155, miR-196a, and miR-210, followed by co-detection of proteins by immunohistochemistry on the same tissue sections. miRNA expression in surgically resected PDAC tissues and in endoscopic ultrasonography (EUS)-guided fine needle aspirate (EUS-FNA) samples was analyzed in cytokeratin 19 (CK19)-positive epithelial cells using optical intensity analysis. Results In 10 resected PDAC samples miR-10b was the most frequently and consistently overexpressed miRNA among characterized miRNAs, exhibiting a 4-fold increase in the cancer cells (p=0.012). Given this preferential overexpression of miR-10b, we sought to determine whether miR-10b expression was clinically relevant. Accordingly, miR-10b expression was examined in 106 EUS-FNA samples obtained from pancreatic lesions. miR-10b expression was increased in cancer cells compared to CK19-positive epithelial cells in benign lesions (p=0.0001). In patients with PDAC, lower levels of miR-10b were associated with improved response to multimodality neoadjuvant therapy, likelihood of surgical resection, delayed time to metastasis, and increased survival. Conclusion miR-10b is a novel diagnostic biomarker for PDAC when assessing pancreatic lesions. Expression of miR-10b is predictive of response to neoadjuvant therapy and outcome in this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.