Metabolic reprogramming, which is characteristic of cancer cells that rapidly adapt to the hypoxic microenvironment and is crucial for tumor growth and metastasis, is recognized as one of the major mechanisms underlying therapeutic resistance. Mitochondria, which are directly involved in metabolic reprogramming, are used to design novel mitochondria-targeted anticancer agents. Despite being targeted by melatonin, the functional role of mitochondria in melatonin’s oncostatic activity remains unclear. In this study, we aim to investigate the role of melatonin in mitochondrial metabolism and its functional consequences in head and neck cancer. We analyzed the effects of melatonin on head and neck squamous cell carcinoma (HNSCC) cell lines (Cal-27 and SCC-9), which were treated with 100, 500, and 1500 µM of melatonin for 1, 3, and 5 days, and found a connection between a change of metabolism following melatonin treatment and its effects on mitochondria. Our results demonstrate that melatonin induces a shift to an aerobic mitochondrial metabolism that is associated with changes in mitochondrial morphology, function, fusion, and fission in HNSCC. We found that melatonin increases oxidative phosphorylation (OXPHOS) and inhibits glycolysis in HNSCC, resulting in increased ROS production, apoptosis, and mitophagy, and decreased cell proliferation. Our findings highlight new molecular pathways involved in melatonin’s oncostatic activity, suggesting that it could act as an adjuvant agent in a potential therapy for cancer patients. We also found that high doses of melatonin, such as those used in this study for its cytotoxic impact on HNSCC cells, might lead to additional effects through melatonin receptors.
We explored predictive factors of pseudoprogression (PsP) and its impact on prognosis in a retrospective series of uniformly treated glioblastoma patients. Patients were classified as having PsP, early progression (eP) or neither (nP). We examined potential associations with clinical, molecular, and basal imaging characteristics and compared overall survival (OS), progression‐free survival (PFS), post‐progression survival (PPS) as well as the relationship between PFS and PPS in the three groups. Of the 256 patients studied, 56 (21.9%) were classified as PsP, 70 (27.3%) as eP, and 130 (50.8%) as nP. Only MGMT methylation status was associated to PsP. MGMT methylated patients had a 3.5‐fold greater possibility of having PsP than eP (OR: 3.48; 95% CI: 1.606–7.564; P = 0.002). OS was longer for PsP than eP patients (18.9 vs. 12.3 months; P = 0.0001) but was similar for PsP and nP patients (P = 0.91). OS was shorter–though not significantly so—for PsP than nP patients (OS: 19.5 vs. 27.9 months; P = 0.63) in methylated patients. PPS was similar for patients having PsP, eP or nP (PPS: 7.2 vs. 5.4 vs. 6.7; P = 0.43). Neurological deterioration occurred in 64.3% of cases at the time they were classified as PsP and in 72.8% of cases of eP (P = 0.14). PsP confounds the evaluation of disease and does not confer a survival advantage in glioblastoma.
Despite multimodal treatment approaches, the prognosis of brain metastases (BM) from non-small cell lung cancer (NSCLC) remains poor. Untreated patients with BM have a median survival of about 1 month, with almost all patients dying from neurological causes. We herein present the first report describing the response of BM from NSCLC patients to an oral nutraceutical product containing silibinin, a flavonoid extracted from the seeds of the milk thistle. We present evidence of how the use of the silibinin-based nutraceutical Legasil® resulted in significant clinical and radiological improvement of BM from NSCLC patients with poor performance status that progressed after whole brain radiotherapy and chemotherapy. The suppressive effects of silibinin on progressive BM, which involved a marked reduction of the peritumoral brain edema, occurred without affecting the primary lung tumor outgrowth in NSCLC patients. Because BM patients have an impaired survival prognosis and are in need for an immediate tumor control, the combination of brain radiotherapy with silibinin-based nutraceuticals might not only alleviate BM edema but also prove local control and time for either classical chemotherapeutics with immunostimulatory effects or new immunotherapeutic agents such as checkpoint blockers to reveal their full therapeutic potential in NSCLC BM patients. New studies aimed to illuminate the mechanistic aspects underlying the regulatory effects of silibinin on the cellular and molecular pathobiology of BM might expedite the entry of new formulations of silibinin into clinical testing for progressive BM from lung cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.