This clinical controlled study clearly demonstrated the better parenchymal tolerance to IPC over CPC, especially in patients with abnormal liver parenchyma.
Portopulmonary hypertension represents a major risk factor for transplantation; therefore, preoperative detection is crucial. The aims of this study were to determine (1) whether Doppler echocardiography performed at evaluation is a reliable tool for detecting portopulmonary hypertension and (2) the incidence of acquired portopulmonary hypertension profile after evaluation. One hundred sixty-five patients had Doppler echocardiography and right heart catheterization at evaluation over a 9-year period. All patients had a prospective follow-up, and the results of catheterization at evaluation were compared with those obtained at the time of transplantation. Seventeen of 165 patients met the criteria for portopulmonary hypertension on Doppler echocardiography. Portopulmonary hypertension was confirmed by catheterization in 10 patients and ruled out in 7. There were no false negatives for echocardiography. Mean pulmonary artery pressure was significantly higher during the initial phase of transplantation than at evaluation (17.8 ؎ 4.3 vs. 20.3 ؎ 5.5 mm Hg, respectively, P < .0001), and there was no significant correlation between values obtained at these 2 time points. Three patients showed to have acquired portopulmonary hypertension profile while waiting for a graft within time intervals ranging from 2.5 to 5 months. In conclusion, Doppler echocardiography is a highly sensitive tool for detecting portopulmonary hypertension. However, because this technique has a poor positive predictive value, right heart catheterization is recommended for confirming portopulmonary hypertension. In addition, the absence of portopulmonary hypertension at evaluation does not exclude the occasional occurrence of acquired portopulmonary hypertension profile after listing. P ulmonary hypertension associated with portal hypertension, the so-called portopulmonary hypertension, is a rare complication of cirrhosis. When severe, this condition is a major risk factor for transplantation because, in most cases, patients are at best partially responsive to medical therapies. 1 If it is impossible to lower mean pulmonary artery pressure below 40 to 50 mm Hg during transplantation procedure, any significant hemodynamic changes, such as those observed at the time of caval clamping and reperfusion of the graft, may result in irreversible cardiac arrest, especially if right ventricular function is impaired. 2 As a consequence, many authors consider that severe portopulmonary hypertension (i.e., mean pulmonary artery pressure [MPAP] above 40 mm Hg) represents a contraindication for liver transplantation because it would carry an unacceptable mortality rate. 3 Because portopulmonary hypertension is frequently asymptomatic until mean pulmonary pressure exceeds 40 mm Hg, most authors recommend systematic screening at evaluation. Several studies have suggested that Doppler echocardiography, when performed during pretransplantation evaluation, is a useful noninvasive tool to document or exclude portopulmonary hypertension, 4-6 even though this technique ...
Aims Out-of-hospital cardiac arrest (OHCA) without return of spontaneous circulation (ROSC) despite conventional resuscitation is common and has poor outcomes. Adding extracorporeal membrane oxygenation (ECMO) to cardiopulmonary resuscitation (extracorporeal-CPR) is increasingly used in an attempt to improve outcomes. Methods and results We analysed a prospective registry of 13 191 OHCAs in the Paris region from May 2011 to January 2018. We compared survival at hospital discharge with and without extracorporeal-CPR and identified factors associated with survival in patients given extracorporeal-CPR. Survival was 8% in 525 patients given extracorporeal-CPR and 9% in 12 666 patients given conventional-CPR (P = 0.91). By adjusted multivariate analysis, extracorporeal-CPR was not associated with hospital survival [odds ratio (OR), 1.3; 95% confidence interval (95% CI), 0.8–2.1; P = 0.24]. By conditional logistic regression with matching on a propensity score (including age, sex, occurrence at home, bystander CPR, initial rhythm, collapse-to-CPR time, duration of resuscitation, and ROSC), similar results were found (OR, 0.8; 95% CI, 0.5–1.3; P = 0.41). In the extracorporeal-CPR group, factors associated with hospital survival were initial shockable rhythm (OR, 3.9; 95% CI, 1.5–10.3; P = 0.005), transient ROSC before ECMO (OR, 2.3; 95% CI, 1.1–4.7; P = 0.03), and prehospital ECMO implantation (OR, 2.9; 95% CI, 1.5–5.9; P = 0.002). Conclusions In a population-based registry, 4% of OHCAs were treated with extracorporeal-CPR, which was not associated with increased hospital survival. Early ECMO implantation may improve outcomes. The initial rhythm and ROSC may help select patients for extracorporeal-CPR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.