Detailed angle and energy resolved measurements of positrons ejected from the back of a gold target that was irradiated with an intense picosecond duration laser pulse reveal that the positrons are ejected in a collimated relativistic jet. The laser-positron energy conversion efficiency is ∼2×10{-4}. The jets have ∼20 degree angular divergence and the energy distributions are quasimonoenergetic with energy of 4 to 20 MeV and a beam temperature of ∼1 MeV. The sheath electric field on the surface of the target is shown to determine the positron energy. The positron angular and energy distribution is controlled by varying the sheath field, through the laser conditions and target geometry.
The standard model for the origin of galactic magnetic fields is through the amplification of seed fields via dynamo or turbulent processes to the level consistent with present observations. Although other mechanisms may also operate, currents from misaligned pressure and temperature gradients (the Biermann battery process) inevitably accompany the formation of galaxies in the absence of a primordial field. Driven by geometrical asymmetries in shocks associated with the collapse of protogalactic structures, the Biermann battery is believed to generate tiny seed fields to a level of about 10(-21) gauss (refs 7, 8). With the advent of high-power laser systems in the past two decades, a new area of research has opened in which, using simple scaling relations, astrophysical environments can effectively be reproduced in the laboratory. Here we report the results of an experiment that produced seed magnetic fields by the Biermann battery effect. We show that these results can be scaled to the intergalactic medium, where turbulence, acting on timescales of around 700 million years, can amplify the seed fields sufficiently to affect galaxy evolution.
We report on the dynamics of ultrafast heating in cryogenic hydrogen initiated by a ≲300 fs, 92 eV free electron laser x-ray burst. The rise of the x-ray scattering amplitude from a second x-ray pulse probes the transition from dense cryogenic molecular hydrogen to a nearly uncorrelated plasmalike structure, indicating an electron-ion equilibration time of ∼0.9 ps. The rise time agrees with radiation hydrodynamics simulations based on a conductivity model for partially ionized plasma that is validated by two-temperature density-functional theory.
We investigate ultrafast (fs) electron dynamics in a liquid hydrogen sample, isochorically and volumetrically heated to a moderately coupled plasma state. Thomson scattering measurements using 91.8 eV photons from the free-electron laser in Hamburg (FLASH at DESY) show that the hydrogen plasma has been driven to a nonthermal state with an electron temperature of 13 eV and an ion temperature below 0.1 eV, while the free-electron density is 2:8 Â 10 20 cm À3 . For dense plasmas, our experimental data strongly support a nonequilibrium kinetics model that uses impact ionization cross sections based on classical free-electron collisions. The investigation of warm dense matter (WDM) is one of the grand challenges of contemporary physics [1]. WDM is a plasma state characterized by moderate-tostrong interparticle coupling which takes place at freeelectron temperatures of several eV and free-electron densities around solid density [1]. It is present in many physical environments, such as planetary interiors [2,3], gravitationally collapsing protostellar disks, laser matter interaction and particularly during the implosion of an inertial confinement fusion capsule [4]. While in the astrophysical context WDM exists under stable conditions, in the laboratory it is achieved only as a transient state bridging condensed matter and hot plasma regimes. Here, we report on the first investigation of the nonequilibrium transition of hydrogen from a liquid to a moderately coupled plasma on the fs time scale, induced by highly intense soft-x-ray irradiation. This is an important step towards the investigation of strongly-coupled plasmas which are within reach of current light sources such as the Linac Coherent Light Source (LCLS). Our measurement enables unprecedented direct tests of nonequilibrium statistical models beyond mean field theories in a regime where collision and relaxation processes are dominant [5][6][7].The use of x-ray scattering for the investigation of dense, strongly-coupled plasmas was successfully demonstrated in the past decade [5,[7][8][9][10][11]. This technique is the x-ray analog of optical Thomson scattering (TS) [12] and enables the experimental determination of plasma parameters in dense systems where optical light cannot penetrate. While previous experiments were carried out using highenergy laser facilities, the advent of soft-and hard-x-ray free-electron lasers (FELs) makes ultrashort high brightness beams available for this type of research [13,14]. This Letter reports on ultrafast heating of liquid hydrogen and TS measurement of dense plasma parameters using softx-ray FEL radiation. For the first time, nonequilibrium distributions are observed and the underlying relaxation dynamics are compared with kinetic models showing electron relaxation times in the order of 20 fs, thus, shorter than the pulse duration.The scattering taking place is collective TS, which is characterized by a spectrally blue and red shifted response due to collective electron motion, plasmons, and nearly elastic scattering due t...
Laser-produced proton beams have been used to achieve ultrafast volumetric heating of carbon samples at solid density. The isochoric melting of carbon was probed by a scattering of x rays from a secondary laser-produced plasma. From the scattering signal, we have deduced the fraction of the material that was melted by the inhomogeneous heating. The results are compared to different theoretical approaches for the equation of state which suggests modifications from standard models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.