The Clear-PEM detector system is a compact positron emission mammography scanner with about 12000 channels aiming at high sensitivity and good spatial resolution. Front-end, Trigger, and Data Acquisition electronics are crucial components of this system. The on-detector front-end is implemented as a data-driven synchronous system that identifies and selects the analog signals whose energy is above a predefined threshold. The off-detector trigger logic uses digitized front-end data streams to compute pulse amplitudes and timing. Based on this information it generates a coincidence trigger signal that is used to initiate the conditioning and transfer of the relevant data to the data acquisition computer. To minimize dead-time, the data acquisition electronics makes extensive use of pipeline processing structures and derandomizer memories with multievent capacity. The system operates at 100-MHz clock frequency, and is capable of sustaining a data acquisition rate of 1 million events per second with an efficiency above 95%, at a total single photon background rate of 10 MHz. The basic component of the front-end system is a low-noise amplifier-multiplexer chip presently under development. The off-detector system is designed around a dual-bus crate backplane for fast intercommunication between the system boards. The trigger and data acquisition logic is implemented in large FPGAs with 4 million gates. Monte Carlo simulation results evaluating the trigger performance, as well as results of hardware simulations are presented, showing the correctness of the design and the implementation approach.
The Clear-PEM scanner for positron emission mammography under development is described. The detector is based on pixelized LYSO crystals optically coupled to avalanche photodiodes and readout by a fast low-noise electronic system. A dedicated digital trigger (TGR) and data acquisition (DAQ) system is used for on-line selection of coincidence events with high efficiency, large bandwidth and small dead-time. A specialized gantry allows to perform exams of the breast and of the axilla. In this paper we present results of the measurement of detector modules that integrate the system under construction as well as the imaging performance estimated from Monte Carlo simulated data. r
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.