Model projections suggest that although increased temperature and decreased soil moisture will act to reduce global crop yields by 2050, the direct fertilization effect of rising carbon dioxide concentration ([CO 2 ]) will offset these losses. The CO 2 fertilization factors used in models to project future yields were derived from enclosure studies conducted approximately 20 years ago. Free-air concentration enrichment (FACE) technology has now facilitated large-scale trials of the major grain crops at elevated [CO 2 ] under fully open-air field conditions. In those trials, elevated [CO 2 ] enhanced yield by È50% less than in enclosure studies. This casts serious doubt on projections that rising [CO 2 ] will fully offset losses due to climate change. M uch effort has been put into linking models of climate and crop growth to project future changes in crop yields and food supply across the globe (1-4). Projections reviewed by the Intergovernmental Panel on Climate Change (IPCC) suggest that increased temperature and decreased soil moisture, which would otherwise reduce crop yields, will be offset by the direct fertilization effect of rising carbon dioxide concentration (ECO 2^) (5-7). The IPCC projections suggest that total crop yield may rise when averaged across the globe, but this net gain will result from generally lower yields in the tropics and increased yields in temperate zones. The accuracy of these projections and thus future food security depend critically on the magnitude of the CO 2 fertilization effect under actual growing conditions. Atmospheric ECO 2^h as risen from È260 parts per million (ppm) approximately 150 years ago to 380 ppm today (8). Yet ECO 2^i s markedly uniform across the globe; so, in contrast to temperature and soil moisture, there is no consistent spatial variation on which to estimate yield responses to increasing ECO 2^. Similarly, it is not easy to alter ECO 2^e xperimentally around a crop in the field. As a result, most information about crop responses to elevated ECO 2^i s obtained from studies in greenhouses, laboratory controlled-environment chambers, and transparent field chambers, where released CO 2 may be retained and easily controlled. These settings have provided the basis for projecting CO 2 fertilization effects on the major food crops: maize, rice, sorghum, soybeans, and wheat.Crops sense and respond directly to rising ECO 2^t hrough photosynthesis and stomatal conductance, and this is the basis for the fertilization effect on yield (9). In C 3 plants, mesophyll cells containing ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) are in direct contact with the intercellular air space that is connected to the atmosphere via stomatal pores in the epidermis. Hence, in C 3 crops, rising CO 2 increases net photosynthetic CO 2 uptake because RuBisCO is not CO 2 -saturated in today_s atmosphere and because CO 2 inhibits the competing oxygenation reaction leading to photorespiration. RuBisCO is highly conserved across terrestrial plants, so instantaneous responses to...
Trifolium repens L. and Lolium perenne L. were grown in monocultures and bi‐species mixture in a Free Air Carbon Dioxide Enrichment (FACE) experiment at elevated (60 Pa) and ambient (35 Pa) CO2 partial pressure (pCO2) for three years. The effects of defoliation frequencies (4 and 7 cuts in 1993; 4 and 8 cuts in 1994/95) and nitrogen fertilization (10 and 42 g m–2 y–1 N in 1993; 14 and 56 g m–2 y–1 N in 1994/95) on the growth response to pCO2 were investigated. There were significant interspecific differences in the CO2 responses during the first two years, while in the third growing season, these interspecific differences disappeared. Yield of T. repens in monocultures increased in the first two years by 20% when grown at elevated pCO2. This CO2 response was independent of defoliation frequency and nitrogen fertilization. In the third year, the CO2 response of T. repens declined to 11%. In contrast, yield of L. perenne monocultures increased by only 7% on average over three years at elevated pCO2. The yield response of L. perenne to CO2 changed according to defoliation frequency and nitrogen fertilization, mainly in the second and third year. The ratio of root/yield of L. perenne increased under elevated pCO2, low N fertilizer rate, and frequent defoliation, but it remained unchanged in T. repens. We suggest that the more abundant root growth of L. perenne was related to increased N limitation under elevated pCO2. The consequence of these interspecific differences in the CO2 response was a higher proportion of T. repens in the mixed swards at elevated pCO2. This was evident in all combinations of defoliation and nitrogen treatments. However, the proportion of the species was more strongly affected by N fertilization and defoliation frequency than by elevated pCO2. Based on these results, we conclude that the species proportion in managed grassland may change as the CO2 concentration increases. However, an adapted management could, at least partially, counteract such CO2 induced changes in the proportion of the species. Since the availability of mineral N in the soil may be important for the species’ responses to elevated pCO2, more long‐term studies, particularly of processes in the soil, are required to predict the entire ecosystem response.
~Symbiotic N, fixation is one of the main processes that introduces N into terrestrial ecosystems. As such, it may be crucial for the sequestration of the extra C available in a world of continuously increasing atmospheric CO, partial pressure (pC0,). The effect of elevated pC0, (60 Pa) on symbiotic N, fixation ('5N-isotope dilution method) was investigated using Free-Air-C0,-Enrichment technology over a period of 3 years. Trifolium repens was cultivated either alone or together with Lolium perenne (a nonfixing reference crop) in mixed swards. Two different N fertilization levels and defoliation frequencies were applied. The total N yield increased consistently and the percentage of plant N derived from symbiotic N, fixation increased significantly in T. repens under elevated pC0,. All additionally assimilated N was derived from symbiotic N, fixation, not from the soil. In the mixtures exposed to elevated pCO,, an increased amount of symbiotically fixed N (+7.8,8.2, and 6.2 g m-' a-' in 1993, 1994, and 1995, respectively) was introduced into the system. lncreased N, fixation is a competitive advantage for T. repens in mixed swards with pasture grasses and may be a crucial factor in maintaining the C:N ratio in the ecosystem as a whole.
Photosynthesis is commonly stimulated in grasslands with experimental increases in atmospheric CO2 concentration ([CO2]), a physiological response that could significantly alter the future carbon cycle if it persists in the long term. Yet an acclimation of photosynthetic capacity suggested by theoretical models and short‐term experiments could completely remove this effect of CO2. Perennial ryegrass (Lolium perenne L. cv. Bastion) was grown under an elevated [CO2] of 600 µmol mol−1 for 10 years using Free Air CO2Enrichment (FACE), with two contrasting nitrogen levels and abrupt changes in the source : sink ratio following periodic harvests. More than 3000 measurements characterized the response of leaf photosynthesis and stomatal conductance to elevated [CO2] across each growing season for the duration of the experiment. Over the 10 years as a whole, growth at elevated [CO2] resulted in a 43% higher rate of light‐saturated leaf photosynthesis and a 36% increase in daily integral of leaf CO2 uptake. Photosynthetic stimulation was maintained despite a 30% decrease in stomatal conductance and significant decreases in both the apparent, maximum carboxylation velocity (Vc,max) and the maximum rate of electron transport (Jmax). Immediately prior to the periodic (every 4–8 weeks) cuts of the L. perenne stands, Vc,max and Jmax, were significantly lower in elevated than in ambient [CO2] in the low‐nitrogen treatment. This difference was smaller after the cut, suggesting a dependence upon the balance between the sources and sinks for carbon. In contrast with theoretical expectations and the results of shorter duration experiments, the present results provide no significant change in photosynthetic stimulation across a 10‐year period, nor greater acclimation in Vc,max and Jmax in the later years in either nitrogen treatment.
The extent of the response of plant growth to atmospheric CO enrichment depends on the availability of resources other than CO. An important growth-limiting resource under field conditions is nitrogen (N). N may, therefore, influence the CO response of plants. The effect of elevated CO (60 Pa) partial pressure (pCO) on the N nutrition of field-grown Lolium perenne swards, cultivated alone or in association with Trifolium repens, was investigated using free air carbon dioxide enrichment (FACE) technology over 3 years. The established grassland ecosystems were treated with two N fertilization levels and were defoliated at two frequencies. Under elevated pCO, the above-ground plant material of the L. perenne monoculture showed a consistent and significant decline in N concentration which, in general, led to a lower total annual N yield. Despite the decline in the critical N concentration (minimum N concentration required for non-N-limited biomass production) under elevated pCO, the index of N nutrition (ratio of actual N concentration and critical N concentration) was lower under elevated pCO than under ambient pCO in frequently defoliated L. perenne monocultures. Thus, we suggest that reduced N yield under elevated pCO was evoked indirectly by a reduction of plant-available N. For L. perenne grown in association with T. repens and exposed to elevated pCO, there was an increase in the contribution of symbiotically fixed N to the total N yield of the grass. This can be explained by an increased apparent transfer of N from the associated N-fixing legume species to the non-fixing grass. The total annual N yield of the mixed grass/legume swards increased under elevated pCO. All the additional N yielded was due to symbiotically fixed N. Through the presence of an N-fixing plant species more symbiotically fixed N was introduced into the system and consequently helped to overcome N limitation under elevated pCO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.