The 6-week progressive prehabilitation program for subjects undergoing ACLR led to improved knee function based on the single-legged hop test and self-reported assessment using the modified Cincinnati score. These effects were sustained at 12 weeks postoperatively. This study supports prehabilitation as a consideration for patients awaiting ACLR; however, further studies are warranted.
BackgroundSupervised preoperative muscle strengthening programmes (prehabilitation) can improve recovery after total joint arthroplasty but are considered resource intensive. Neuromuscular electrical stimulation (NMES) has been shown to improve quadriceps femoris muscle (QFM) strength and clinical function in subjects with knee osteoarthritis (OA) however it has not been previously investigated as a prehabilitation modality.MethodsThis pilot study assessed the compliance of a home-based, NMES prehabilitation programme in patients undergoing total knee arthroplasty (TKA). We evaluated its effect on preoperative and postoperative isometric quadriceps femoris muscle (QFM) strength, QFM cross-sectional area (CSA) and clinical function (subjective and objective). Seventeen subjects were recruited with 14 completing the study (NMES group n = 9; Control group n = 5).ResultsOverall compliance with the programme was excellent (99%). Preoperative QFM strength increased by 28% (p > 0.05) with associated gains in walk, stair-climb and chair-rise times (p < 0.05). Early postoperative strength loss (approximately 50%) was similar in both groups. Only the NMES group demonstrated significant strength (53.3%, p = 0.011) and functional recovery (p < 0.05) from 6 to 12 weeks post-TKA. QFM CSA decreased by 4% in the NMES group compared to a reduction of 12% in the control group (P > 0.05) at 12 weeks postoperatively compared to baseline. There were only limited associations found between objective and subjective functional outcome instruments.ConclusionsThis pilot study has shown that preoperative NMES may improve recovery of quadriceps muscle strength and expedite a return to normal activities in patients undergoing TKA for OA. Recommendations for appropriate outcome instruments in future studies of prehabilitation in TKA have been provided.
Much research is currently ongoing into new therapies for cartilage defect repair with new biomaterials frequently appearing which purport to have significant regenerative capacity. These biomaterials may be classified as medical devices, and as such must undergo rigorous testing before they are implanted in humans. A large part of this testing involves in vitro trials and biomechanical testing. However, in order to bridge the gap between the lab and the clinic, in vivo preclinical trials are required, and usually demanded by regulatory approval bodies. This review examines the in vivo models in current use for cartilage defect repair testing and the relevance of each in the context of generated results and applicability to bringing the device to clinical practice. Some of the preclinical models currently used include murine, leporine, ovine, caprine, porcine, canine, and equine models. Each of these has advantages and disadvantages in terms of animal husbandry, cartilage thickness, joint biomechanics and ethical and licencing issues. This review will examine the strengths and weaknesses of the various animal models currently in use in preclinical studies of cartilage repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.