A search for resonances and quantum black holes is performed using the dijet mass spectra measured in proton-proton collisions at ffiffi ffi s p ¼ 8 TeV with the CMS detector at the LHC. The data set corresponds to an integrated luminosity of 19.7 fb −1 . In a search for narrow resonances that couple to quark-quark, quarkgluon, or gluon-gluon pairs, model-independent upper limits, at 95% confidence level, are obtained on the production cross section of resonances, with masses above 1.2 TeV. When interpreted in the context of specific models the limits exclude string resonances with masses below 5.0 TeV; excited quarks below 3.5 TeV; scalar diquarks below 4.7 TeV; W 0 bosons below 1.9 TeV or between 2.0 and 2.2 TeV; Z 0 bosons below 1.7 TeV; and Randall-Sundrum gravitons below 1.6 TeV. A separate search is conducted for narrow resonances that decay to final states including b quarks. The first exclusion limit is set for excited b quarks, with a lower mass limit between 1.2 and 1.6 TeV depending on their decay properties. Searches are also carried out for wide resonances, assuming for the first time width-to-mass ratios up to 30%, and for quantum black holes with a range of model parameters. The wide resonance search excludes axigluons and colorons with mass below 3.6 TeV, and color-octet scalars with mass below 2.5 TeV. Lower bounds between 5.0 and 6.3 TeV are set on the masses of quantum black holes.
The standard model (SM) production of four top quarks (tt tt) in proton-proton collisions is studied by the CMS Collaboration. The data sample, collected during the 2016-2018 data taking of the LHC, corresponds to an integrated luminosity of 137 fb −1 at a center-of-mass energy of 13 TeV. The events are required to contain two same-sign charged leptons (electrons or muons) or at least three leptons, and jets. The observed and expected significances for the tt tt signal are respectively 2.6 and 2.7 standard deviations, and the tt tt cross section is measured to be 12.6 +5.8 −5.2 fb. The results are used to constrain the Yukawa coupling of the top quark to the Higgs boson, y t , yielding a limit of |y t /y SM t | < 1.7 at 95% confidence level, where y SM t is the SM value of y t. They are also used to constrain the oblique parameter of the Higgs boson in an effective field theory framework,Ĥ < 0.12. Limits are set on the production of a heavy scalar or pseudoscalar boson in Type-II two-Higgs-doublet and simplified dark matter models, with exclusion limits reaching 350-470 GeV and 350-550 GeV for scalar and pseudoscalar bosons, respectively. Upper bounds are also set on couplings of the top quark to new light particles.
A search for narrow resonances in proton-proton collisions at √ s = 13 TeV is presented. The invariant mass distribution of the two leading jets is measured with the CMS detector using a data set corresponding to an integrated luminosity of 2.4 fb −1 . The highest observed dijet mass is 6.1 TeV. The distribution is smooth and no evidence for resonant particles is observed. Upper limits at 95% confidence level are set on the production cross section for narrow resonances with masses above 1.5 TeV. When interpreted in the context of specific models, the limits exclude string resonances with masses below 7.0 TeV, scalar diquarks below 6.0 TeV, axigluons and colorons below 5.1 TeV, excited quarks below 5.0 TeV, color-octet scalars below 3.1 TeV, and W bosons below 2.6 TeV. These results significantly extend previously published limits.
The CLEO experiment at the CESR collider has used 13.7 fb(-1) of data to search for the production of the Omega(0)(c) (css ground state) in e(+)e(-) collisions at square root of (s) approximately 10.6 GeV. The modes used to study the Omega(0)(c) are Omega(-)pi(+), Omega(-)pi(+)pi(0), Xi-K-pi(+)pi(+), Xi0K-pi(+), and Omega(-)pi(+)pi(+)pi(-). We observe a signal of 40.4+/-9.0(stat) events at a mass of 2694.6+/-2.6(stat)+/-1.9(syst) MeV/c(2), for all modes combined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.