Theoretical accounts of the speed-accuracy trade-off in rapid movement have usually focused on within-movement error detection and correction, and have consistently ignored the possibility that motor-output variability might be predictably related to movement amplitude and movement time. This article presents a theory of motor-output variability that accounts for the relationship among the movement amplitude, movement time, the mass to be moved, and the resulting movement error. Predictions are derived from physical principles; empirical evidence supporting the principles is presented for three movement paradigms (single-aiming responses, reciprocal movements, and rapid-timing tasks); and the theory and data are discussed in terms of past theoretical accounts and future research directions. Examining the current level of understanding about the production and control of motor responses, many would no doubt be tempted to say that we have not come very far since the early writings of Woodworth (1899) and Hollingworth (1909). These writers were concerned with the basic laws of limb movements (analogous, perhaps to the basic laws of motion that were the cornerstone of physics) that denned the relationship between the simplest aspects of motor
Previous detections of individual astrophysical sources of neutrinos are limited to the Sun and the supernova 1987A, whereas the origins of the diffuse flux of high-energy cosmic neutrinos remain unidentified. On 22 September 2017, we detected a high-energy neutrino, IceCube-170922A, with an energy of ~290 tera-electron volts. Its arrival direction was consistent with the location of a known γ-ray blazar, TXS 0506+056, observed to be in a flaring state. An extensive multiwavelength campaign followed, ranging from radio frequencies to γ-rays. These observations characterize the variability and energetics of the blazar and include the detection of TXS 0506+056 in very-high-energy γ-rays. This observation of a neutrino in spatial coincidence with a γ-ray-emitting blazar during an active phase suggests that blazars may be a source of high-energy neutrinos.
The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. ?? 2013 Elsevier B.V. All rights reserved
We have used data from the TeV γ-ray flare associated with the active galaxy Markarian 421 observed on 15 May 1996 to place bounds on the possible energy-dependence of the speed of light in the context of an effective quantum gravitational energy scale. The possibility of an observable time dispersion in high energy radiation has recently received attention in the literature, with some suggestions that the relevant energy scale could be less than the Planck mass and perhaps as low as 10 16 GeV. The limits derived here indicate this energy scale to be in excess of 4 × 10 16 GeV at the 95% confidence level. To the best of our knowledge, this constitutes the first convincing limit on such phenomena in this energy regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.