Abstract. We have compiled a new catalogue of open clusters in the Galaxy which updates the previous catalogues of Lyngå (1987) and of Mermilliod (1995) (included in the WEBDA database). New objects and new data, in particular, data on kinematics (proper motions) that were not present in the old catalogues, have been included. Virtually all the clusters (1537) presently known were included, which represents an increment of about 347 objects relative to the Lyngå (1987) catalogue. The catalogue is presented in a single table containing all the important data, which makes it easy to use. The catalogue can be accessed on line either at http://www.astro.iag.usp.br/~wilton/ or as an electronic table which will be made available at the CDS.
In this study we follow up our recent paper (Monteiro et al. 2020) and present a homogeneous sample of fundamental parameters of open clusters in our Galaxy, entirely based on Gaia DR2 data. We used published membership probability of the stars derived from Gaia DR2 data and applied our isochrone fitting code, updated as in Monteiro et al. (2020), to GBP and GRP Gaia DR2 data for member stars. In doing this we take into account the nominal errors in the data and derive distance, age, and extinction of each cluster. This work therefore provides parameters for 1743 open clusters and, as a byproduct, a list of likely not physical or dubious open clusters is provided as well for future investigations. Furthermore, it was possible to estimate the mean radial velocity of 831 clusters (198 of which are new and unpublished so far) using stellar radial velocities from Gaia DR2 catalog. By comparing the open cluster distances obtained from isochrone fitting with those obtained from a maximum likelihood estimate of individual member parallaxes, we found a systematic offset of ( − 0.05 ± 0.04)mas.
We present a catalog of mean proper motions and membership probabilities of individual stars for optically visible open clusters, which have been determined using data from the UCAC4 catalog in a homogeneous way. The mean proper motion of the cluster and the membership probabilities of the stars in the region of each cluster were determined by applying the statistical method in a modified fashion. In this study, we applied a global optimization procedure to fit the observed distribution of proper motions with two overlapping normal bivariate frequency functions, which also take the individual proper motion errors into account. For 724 clusters, this is the first determination of proper motion, and for the whole sample, we present results with a much larger number of identified astrometric member stars. Furthermore, it was possible to estimate the mean radial velocity of 364 clusters (102 unpublished so far) with the stellar membership using published radial velocity catalogs. These results provide an increase of 30% and 19% in the sample of open clusters with a determined mean absolute proper motion and mean radial velocity, respectively.
Abstract. This paper reports on the spectroscopic investigation of 12 Cepheids which are situated in the crucial region of galactocentric distances from 9 kpc to 12 kpc, where according to our previous results (Andrievsky et al. 2002c;Luck et al. 2003) the radial metallicity distribution experiences an obvious change. In particular, the wriggle in the iron abundance distribution is found to fall approximately at galactocentric distances 10-11 kpc (assuming galactocentric distance of the Sun R G, = 7.9 kpc). Within the transition zone from 10 to 11 kpc the relative-to-solar iron abundance decreases approximately to -0.2 dex. The new sample of stars, analyzed in present paper, gives results supporting the previous conclusion about the multimodal character of the metallicity distribution in galactic disc. Using a quite simple consideration of galactic chemical evolution we show that the observed distribution can be explained in the framework of a model which includes the spiral arms. In particular, the wriggle feature associated with R G ≈ 11 kpc can be interpreted as a change of metallicity level in the vicinity of the galactic corotation resonance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.