Quasi-static magnetic-fields up to 800 T are generated in the interaction of intense laser pulses (500 J, 1 ns, − 10 W cm 17 2 ) with capacitor-coil targets of different materials. The reproducible magnetic-field peak and rise-time, consistent with the laser pulse duration, were accurately inferred from measurements with GHz-bandwidth inductor pickup coils (B-dot probes). Results from Faraday rotation of polarized optical laser light and deflectometry of energetic proton beams are consistent with the B-dot probe measurements at the early stages of the target charging, up to ≈ t 0.35 ns, and then are disturbed by radiation and plasma effects. The field has a dipole-like distribution over a characteristic volume of 1 mm 3 , which is consistent with theoretical expectations. These results demonstrate a very efficient conversion of the laser energy into magnetic fields, thus establishing a robust laser-driven platform for reproducible, well characterized, generation of quasi-static magnetic fields at the kT-level, as well as for magnetization and accurate probing of high-energy-density samples driven by secondary powerful laser or particle beams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.