The pan-cancer analysis of whole genomes The expansion of whole-genome sequencing studies from individual ICGC and TCGA working groups presented the opportunity to undertake a meta-analysis of genomic features across tumour types. To achieve this, the PCAWG Consortium was established. A Technical Working Group implemented the informatics analyses by aggregating the raw sequencing data from different working groups that studied individual tumour types, aligning the sequences to the human genome and delivering a set of high-quality somatic mutation calls for downstream analysis (Extended Data Fig. 1). Given the recent meta-analysis
We show that the M2 isoform of pyruvate kinase (M2PYK) exists in equilibrium between monomers and tetramers regulated by allosteric binding of naturally occurring small-molecule metabolites. Phenylalanine stabilizes an inactive T-state tetrameric conformer and inhibits M2PYK with an IC 50 value of 0.24 mM, whereas thyroid hormone (triiodo-L-thyronine, T3) stabilizes an inactive monomeric form of M2PYK with an IC 50 of 78 nM. The allosteric activator fructose-1,6-bisphosphate [F16BP, AC 50 (concentration that gives 50% activation) of 7 μM] shifts the equilibrium to the tetrameric active Rstate, which has a similar activity to that of the constitutively fully active isoform M1PYK. Proliferation assays using HCT-116 cells showed that addition of inhibitors phenylalanine and T3 both increased cell proliferation, whereas addition of the activator F16BP reduced proliferation. F16BP abrogates the inhibitory effect of both phenylalanine and T3, highlighting a dominant role of M2PYK allosteric activation in the regulation of cancer proliferation. X-ray structures show constitutively fully active M1PYK and F16BP-bound M2PYK in an R-state conformation with a lysine at the dimer-interface acting as a peg in a hole, locking the active tetramer conformation. Binding of phenylalanine in an allosteric pocket induces a 13°rotation of the protomers, destroying the peg-in-hole R-state interface. This distinct T-state tetramer is stabilized by flipped out Trp/Arg side chains that stack across the dimer interface. Xray structures and biophysical binding data of M2PYK complexes explain how, at a molecular level, fluctuations in concentrations of amino acids, thyroid hormone, and glucose metabolites switch M2PYK on and off to provide the cell with a nutrient sensing and growth signaling mechanism.allosteric regulation | nutrient sensor | thyroid hormone T3 | Warburg effect T he last of 10 enzymatic steps used to convert glucose to pyruvate is carried out by pyruvate kinase (PYK), which transfers a phosphate from phosphoenolpyruvate to ADP to generate ATP. There are four human PYK isoforms (1); RPYK is restricted to erythrocytes, LPYK is found predominantly in liver and kidney, M1PYK is in muscle and brain, and M2PYK is found in fetal tissues and in proliferating cells. All four isoforms are active as tetramers; M1PYK is constitutively fully active, whereas R-, L-, and M2PYKs are activated by the effector molecule fructose-1,6-bisphosphate (F16BP) (2). M2PYK is a splice variant of the nonallosteric M1PYK isoform and differs by 22 amino acid residues (3). Recent quantification of the concentrations of constitutively fully active M1PYK and allosterically regulated M2PYK isoforms in both cancerous and control tissue samples has revealed that M2PYK is almost always the most abundant isoform in cancer cells, although it can also be predominant in matched control tissues (4). The up-regulation of the M2PYK isoform plays a key role in cancer metabolism (3) and explains the Warburg effect, in which proliferating cancer cells metabolize increas...
BackgroundThis multicentre cohort study sought to define a robust pathological indicator of clinically meaningful response to neoadjuvant chemotherapy in oesophageal adenocarcinoma.MethodsA questionnaire was distributed to 11 UK upper gastrointestinal cancer centres to determine the use of assessment of response to neoadjuvant chemotherapy. Records of consecutive patients undergoing oesophagogastric resection at seven centres between January 2000 and December 2013 were reviewed. Pathological response to neoadjuvant chemotherapy was assessed using the Mandard Tumour Regression Grade (TRG) and lymph node downstaging.ResultsTRG (8 of 11 centres) was the most widely used system to assess response to neoadjuvant chemotherapy, but there was discordance on how it was used in practice. Of 1392 patients, 1293 had TRG assessment; data were available for clinical and pathological nodal status (cN and pN) in 981 patients, and TRG, cN and pN in 885. There was a significant difference in survival between responders (TRG 1–2; median overall survival (OS) not reached) and non‐responders (TRG 3–5; median OS 2·22 (95 per cent c.i. 1·94 to 2·51) years; P < 0·001); the hazard ratio was 2·46 (95 per cent c.i. 1·22 to 4·95; P = 0·012). Among local non‐responders, the presence of lymph node downstaging was associated with significantly improved OS compared with that of patients without lymph node downstaging (median OS not reached versus 1·92 (1·68 to 2·16) years; P < 0·001).ConclusionA clinically meaningful local response to neoadjuvant chemotherapy was restricted to the small minority of patients (14·8 per cent) with TRG 1–2. Among local non‐responders, a subset of patients (21·3 per cent) derived benefit from neoadjuvant chemotherapy by lymph node downstaging and their survival mirrored that of local responders.
Cancers require telomere maintenance mechanisms for unlimited replicative potential. They achieve this through TERT activation or alternative telomere lengthening associated with ATRX or DAXX loss. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we dissect whole-genome sequencing data of over 2500 matched tumor-control samples from 36 different tumor types aggregated within the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium to characterize the genomic footprints of these mechanisms. While the telomere content of tumors with ATRX or DAXX mutations (ATRX/DAXX trunc) is increased, tumors with TERT modifications show a moderate decrease of telomere content. One quarter of all tumor samples contain somatic integrations of telomeric sequences into non-telomeric DNA. This fraction is increased to 80% prevalence in ATRX/DAXX trunc tumors, which carry an aberrant telomere variant repeat (TVR) distribution as another genomic marker. The latter feature includes enrichment or depletion of the previously undescribed singleton TVRs TTCGGG and TTTGGG, respectively. Our systematic analysis provides new insight into the recurrent genomic alterations associated with telomere maintenance mechanisms in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.