[1] Down core concentration gradients of dissolved methane and sulfate; isotope gradients of methane, dissolved inorganic carbon, and authigenic carbonate; and organic matter elemental ratios are incorporated into a vent evolution model to describe spatial and temporal variability of sedimentary microbial activity overlying acoustic wipeout zones at Mississippi Canyon (MC) 118, Gulf of Mexico. We tested the hypothesis that these zones indicate areas where sediments are exposed to elevated fluid flux and therefore should contain saturated methane concentrations and enhanced microbial activity from sulfate reduction (SR), anaerobic oxidation of methane (AOM), and methanogenesis (MP). Thirty surficial cores (between 22 and 460 cm deep) were collected from sediments overlying and outside the wipeout zones and analyzed for pore water and solid phase constituents. Outside the wipeout zones, sulfate and methane concentrations were similar to overlying-water values and did not vary with depth; indicating low microbial activity. Above the wipeouts, nine cores showed moderate activity with gently sloping sulfate and methane concentration gradients, methane concentrations <20 mM, and isotope depth gradients indicative of organic matter oxidation. In stark contrast to this moderate activity, four cores showed high microbial activity where sulfate concentrations were depleted by $50 cm below seafloor, maximum methane concentrations in the decompressed cores were above 4 mM, and down core profiles of d 13 C-CH 4 and d 13 C-dissolved inorganic carbon (DIC) indicated distinct depth zones of SR, AOM, and MP. Bulk organic matter analysis suggested that the high activity was supported by an organic source that was enriched in carbon (C:N $15) and depleted in d 15 N and d 13 C compared to other activity groups, possibly due to the influx of petroleum or chemosynthetically fixed carbon. Within high activity cores, the d 13 C-DIC values were similar to the d 13 C-CaCO 3 values, a result expected for authigenic carbonate recently precipitated. However, these values were dissimilar in moderate activity cores, suggesting that microbial activity was higher in the past. This study provides evidence that the fluid flux at MC 118 varies over time and that the microbial activity responds to such variability. It also suggests that sediments overlying wipeout zones are not always saturated with respect to methane, which has implications for the formation and detection of gas hydrate.
Biosurfactants catalyzed natural gas hydrate formation in sand/clay packs saturated with seawater. Representative samples from the five possible biosurfactant classifications enhanced hydrate formation rate and decreased hydrate induction time. Biosurfactants increased rates 96% to 288% and decreased induction times 20% to 71% relative to the control. Micellar‐forming rhamnolipid reached a critical micellar concentration at 13 ppm at hydrate‐forming conditions; these micelles migrated readily through a seawater‐saturated sand pack to catalyze hydrate formation in another zone. The type of biosurfactant, in conjunction with specific porous media, help determine massive, dispersed, nodular, or stratified forms of hydrates. Results suggested that minimal microbial activity in ocean‐floor sands can greatly influence gas hydrate formation.
A specialized pore-fluid array (PFA) sampler was designed to collect and store pore fluids to monitor temporal changes of ions and gases in gas hydrate bearing sediments. We tested the hypothesis that pore-fluid chemistry records hydrate formation or decomposition events and reflects local seismic activity. The PFA is a seafloor probe that consists of an interchangeable instrument package that houses OsmoSamplers, long-term pore-fluid samplers, a specialized low-dead volume fluid coupler, and eight sample ports along a 10 m sediment probe shaft. The PFA was deployed at Mississippi Canyon 118, a Gulf of Mexico hydrate site. A 170 day record was acquired from the overlying water and 1.3 m below seafloor (mbsf). Fluids were measured for dissolved chloride, sulfate, and methane concentrations and dissolved inorganic carbon and methane stable carbon and deuterium isotope ratios. Chloride and sulfate did not change significantly over time, suggesting the absence of gas hydrate formation or decomposition events. Over the temporal record, methane concentrations averaged 4 mM at 1.3 mbsf, and methane was thermogenic in origin (delta13C-CH4 = -32.4 +/- 3.4 per thousand). The timing of an anomalous 14 mM methane spike coincided with a nearby earthquake (Mw = 5.8), consistent with the hypothesis that pore-fluid chemistry reflects seismic events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.