India is the fourth largest oilseed economy in the world. Among the seven edible oilseeds cultivated in India, rapeseed-mustard contributes 28.6% in the total oilseeds production and ranks second after groundnut sharing 27.8% in the India’s oilseed economy. The mustard growing areas in India are experiencing the vast diversity in the agro climatic conditions and different species of rapeseed-mustard are grown in some or other part of the country. Under marginal resource situation, cultivation of rapeseed-mustard becomes less remunerative to the farmers. This results in a big gap between requirement and production of mustard in India. Therefore site-specific nutrient management through soil-test recommendation based should be adopted to improve upon the existing yield levels obtained at farmers field. Effective management of natural resources, integrated approach to plant-water, nutrient and pest management and extension of rapeseed-mustard cultivation to newer areas under different cropping systems will play a key role in further increasing and stabilizing the productivity and production of rapeseed-mustard. The paper reviews the advances in proper land and seedbed preparation, optimum seed and sowing, planting technique, crop geometry, plant canopy, appropriate cropping system, integrated nutrient management and so forth to meet the ever growing demand of oil in the country and to realize the goal of production of 24 million tonnes of oilseed by 2020 AD through these advanced management techniques.
The oilseed Brassica juncea is an important crop with a long history of cultivation in India and China. Previous studies have suggested a polyphyletic origin of B. juncea and more than one migration from the primary to secondary centers of diversity. We investigated molecular genetic diversity based on 99 simple sequence repeat markers in 119 oilseed B. juncea varieties from China, India, Europe, and Australia to test whether molecular differentiation follows Vavilov's proposal of secondary centers of diversity in India and China. Two distinct groups were identified by markers in the A genome, and the same two groups were confirmed by markers in the B genome. Group 1 included accessions from central and western India, in addition to those from eastern China. Group 2 included accessions from central and western China, as well as those from northern and eastern India. European and Australian accessions were found only in Group 2. Chinese accessions had higher allelic diversity per accession (Group 1) and more private alleles per accession (Groups 1 and 2) than those from India. The marker data and geographic distribution of Groups 1 and 2 were consistent with two independent migrations of B. juncea from its center of origin in the Middle East and neighboring regions along trade routes to western China and northern India, followed by regional adaptation. Group 1 migrated further south and west in India, and further east in China, than Group 2. Group 2 showed diverse agroecological adaptation, with yellow-seeded spring-sown types in central and western China and brown-seeded autumn-sown types in India.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.