Liver fibrosis is a wound healing response to chronic liver injury and inflammation in which macrophages and infiltrating monocytes participate in both the development and resolution phase. In humans, three monocyte subsets have been identified: the classical CD14++CD16−, intermediate CD14++CD16+, and nonclassical CD14+CD16++ monocytes. We studied the phenotype and function of these monocyte subsets in peripheral blood and liver tissue from patients with chronic inflammatory and fibrotic liver diseases. The frequency of intrahepatic monocytes increased in disease compared with control liver tissue, and in both nondiseased and diseased livers there was a higher frequency of CD14++CD16+ cells with blood. Our data suggest two nonexclusive mechanisms of CD14++CD16+ accumulation in the inflamed liver: (1) recruitment from blood, because more than twice as many CD14++CD16+ monocytes underwent transendothelial migration through hepatic endothelial cells compared with CD14++CD16− cells; and (2) local differentiation from CD14++CD16− classical monocytes in response to transforming growth factor β and interleukin (IL)‐10. Intrahepatic CD14++CD16+ cells expressed both macrophage and dendritic cell markers but showed high levels of phagocytic activity, antigen presentation, and T cell proliferation and secreted proinflammatory (tumor necrosis factor α, IL‐6, IL‐8, IL‐1β) and profibrogenic cytokines (IL‐13), chemokines (CCL1, CCL2, CCL3, CCL5), and growth factors (granulocyte colony‐stimulating factor and granulocyte‐macrophage colony‐stimulating factor), consistent with a role in the wound healing response. Conclusion: Intermediate CD14++CD16+ monocytes preferentially accumulate in chronically inflamed human liver as a consequence of enhanced recruitment from blood and local differentiation from classical CD14++CD16− monocytes. Their phagocytic potential and ability to secrete inflammatory and profibrogenic cytokines suggests they play an important role in hepatic fibrogenesis. (HEPATOLOGY 2013)
NAFLD is the commonest cause of incidental LFT abnormalities in primary care (26.4%), of whom 7.6% have advanced fibrosis as calculated by the NFS. This study is the first of its kind to highlight the burden of NAFLD in primary care and provide data on disease severity in this setting.
Regulatory T cells (Tregs) are found at sites of chronic inflammation where they mediate bystander and Ag-specific suppression of local immune responses. However, little is known about the molecular control of Treg recruitment into inflamed human tissues. We report that up to 18% of T cells in areas of inflammation in human liver disease are forkhead family transcriptional regulator box P3 (FoxP3)+ Tregs. We isolated CD4+CD25+CD127lowFoxP3+ Tregs from chronically inflamed human liver removed at transplantation; compared with blood-derived Tregs, liver-derived Tregs express high levels of the chemokine receptors CXCR3 and CCR4. In flow-based adhesion assays using human hepatic sinusoidal endothelium, Tregs used CXCR3 and α4β1 to bind and transmigrate, whereas CCR4 played no role. The CCR4 ligands CCL17 and CCL22 were absent from healthy liver, but they were detected in chronically inflamed liver where their expression was restricted to dendritic cells (DCs) within inflammatory infiltrates. These DCs were closely associated with CD8 T cells and CCR4+ Tregs in the parenchyma and septal areas. Ex vivo, liver-derived Tregs migrated to CCR4 ligands secreted by intrahepatic DCs. We propose that CXCR3 mediates the recruitment of Tregs via hepatic sinusoidal endothelium and that CCR4 ligands secreted by DCs recruit Tregs to sites of inflammation in patients with chronic hepatitis. Thus, different chemokine receptors play distinct roles in the recruitment and positioning of Tregs at sites of hepatitis in chronic liver disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.