Abstract.A selection of achievements and first physics results are presented of the European Integrated Tokamak Modelling Task Force (EFDA ITM-TF) simulation framework, which aims to provide a standardized platform and an integrated modelling suite of validated numerical codes for the simulation and prediction of a complete plasma discharge of an arbitrary tokamak. The framework developed by the ITM-TF, based on a generic data structure including both simulated and experimental data, allows for the development of sophisticated integrated simulations (workflows) for physics application. The equilibrium reconstruction and linear MHD stability simulation chain was applied, in particular, to the analysis of the edge MHD stability of ASDEX Upgrade type-I ELMy Hmode discharges and ITER hybrid scenario, demonstrating the stabilizing effect of an increased Shafranov shift on edge modes. Interpretive simulations of a JET hybrid discharge were performed with two electromagnetic turbulence codes within ITM infrastructure showing the signature of trapped-electron assisted ITG turbulence. A successful benchmark among five EC beam/ray-tracing codes was performed in the ITM framework for an ITER inductive scenario for different launching conditions from the Equatorial and Upper Launcher, showing good agreement of the computed * See the Appendix.
The European Integrated Tokamak Modelling Task Force (ITM-TF) is developing a new type of fully modular and flexible integrated tokamak simulator, which will allow a large variety of simulation types. This ambitious goal requires new concepts of data structure and workflow organisation, which are described for the first time in this paper. The backbone of the system is a physics-and workflow-oriented data structure which allows for the deployment of a fully modular and flexible workflow organisation. The data structure is designed to be generic for any tokamak device and can be used to address physics simulation results, experimental data (including description of subsystem hardware) and engineering issues.
Tore Supra routinely addresses the physics and technology of very long duration plasma discharges, thus bringing precious information on critical issues of long pulse operation of ITER. A new ITER relevant LHCD launcher has allowed coupling to the plasma a power level of 2.7 MW for 78 s, corresponding to a power density close to the design value foreseen for an ITER LHCD system. In accordance with the expectations, long distance (10 cm) power coupling has been obtained. Successive stationary states of the plasma current profile have been controlled in real time featuring i) control of sawteeth with varying plasma parameters, ii) obtaining and sustaining a "hot core" plasma regime, iii) recovery from a voluntarily triggered deleterious MHD regime. The SOL parameters and power deposition have been documented during L-mode ramp-up phase, a crucial point for ITER before the X-point formation. Disruption mitigation studies have been conducted with massive gas injection, evidencing the difference between He and Ar and the possible role of the q=2 surface in limiting the gas penetration. ICRF assisted wall conditioning in the presence of magnetic field has been investigated, culminating in the demonstration that this conditioning scheme allows to recover normal operation after disruptions. Effect of the magnetic field ripple on the intrinsic plasma rotation has been studied, showing the competition between turbulent transport processes and ripple toroidal friction. During dedicated dimensionless experiments, the effect of varying the collisionality on turbulence wavenumber spectra has been documented, giving new insight into the turbulence mechanism. Turbulence measurements have also allowed quantitatively comparing experimental results to predictions by 5D gyrokinetic codes: numerical results simultaneously match the magnitude of effective heat diffusivity, rms values of density fluctuations, and wave-number spectra. A clear correlation between electron temperature gradient and impurity transport in the very core of the plasma has been observed, strongly suggesting the existence of a threshold above which transport is dominated by turbulent electron modes. Dynamics of edge turbulent fluctuations has been studied by correlating data from fast imaging cameras and Langmuir probes, yielding a coherent picture of transport processes involved in the SOL.
The main results of the Tore Supra experimental programme in the years 2007-2008 are reported. They document significant progress achieved in the domain of steady-state tokamak research, as well as in more general issues relevant for ITER and for fusion physics research. Three areas are covered: ITER relevant technology developments and tests in a real machine environment, tokamak operational issues for high power and long pulses, and fusion plasma physics. Results presented in this paper include: test and validation of a new, load-resilient concept of ICRH antenna and of an inspection robot operated under ultra-high vacuum and high temperature conditions; an extensive experimental campaign (5 h of plasma) aiming at deuterium inventory and carbon migration studies; real-time control of sawteeth by ECCD in the presence of fast ion tails; ECRHassisted plasma startup studies; dimensionless scalings of transport and turbulence; transport experiments using active pertubation methods; resistive and fast-particle driven MHD studies. The potential role of Tore Supra in the worldwide fusion programme before the start of ITER operation is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.