Absolute cross sections for isotopically identified products formed in multinucleon transfer in the (136)Xe+(198)Pt system at ∼8 MeV/nucleon are reported. The isotopic distributions obtained using a large acceptance spectrometer demonstrated the production of the "hard-to-reach" neutron-rich isotopes for Z<78 around the N=126 shell closure far from stability. The main contribution to the formation of these exotic nuclei is shown to arise in collisions with a small kinetic energy dissipation. The present experimental finding corroborates for the first time recent predictions that multinucleon transfer reactions would be the optimum method to populate and characterize neutron-rich isotopes around N=126 which are crucial for understanding both astrophysically relevant processes and the evolution of "magic" numbers far from stability.
We present an updated extraction of the proton electromagnetic form factor ratio, µpGE/GM , at low Q 2 . The form factors are sensitive to the spatial distribution of the proton, and precise measurements can be used to constrain models of the proton. An improved selection of the elastic events and reduced background contributions yielded a small systematic reduction in the ratio µpGE/GM compared to the original analysis.
High-precision measurements of the proton elastic form-factor ratio, mu pG p E/G p M, have been made at four-momentum transfer, Q2, values between 0.2 and 0.5 GeV2. The new data, while consistent with previous results, clearly show a ratio less than unity and significant differences from the central values of several recent phenomenological fits. By combining the new form-factor ratio data with an existing cross-section measurement, one finds that in this Q2 range the deviation from unity is primarily due to G p E being smaller than expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.