The aim of the COBRA experiment is to prove the existence of neutrinoless double-beta-decay (0νββ-decay) and to measure its half-life. For this purpose a detector array made of cadmium-zinc-telluride (CdZnTe) semiconductor detectors is operated at the Gran Sasso Underground Laboratory (LNGS) in Italy. This setup is used to investigate the experimental issues of operating CdZnTe detectors in low-background mode and to identify potential background components, whilst additional studies are proceeding in surface laboratories. The experiment currently consists of monolithic, calorimetric detectors of coplanar grid design (CPG detectors). These detectors are 1 × 1 × 1 cm3and are arranged in 4 × 4 detector layers. Ultimately four layers will be installed by the end of 2013, of which two are currently operating. To date 82.3 kg·days of data have been collected. In the region of interest for116Cd around 2.8 MeV, the median energy resolution is 1.5% FWHM, and a background level near 1 counts/keV/kg/y has been reached. This paper gives an overview of the current status of the experiment and future perspectives.
Neutrinoless double-β decay (0νββ decay) is a hypothetical process that can occur if the neutrino is its own antiparticle. The COBRA collaboration operates a demonstrator to search for these decays at the Laboratori Nazionali del Gran Sasso in Italy using CdZnTe semiconductor detectors. The exposure of 234.7 kg d considered in this analysis was collected between September 2011 and February 2015. The analysis focuses on the decay of the nuclides 114 Cd, 128 Te, 70 Zn, 130 Te and 116 Cd. A Bayesian analysis is performed to estimate the signal strength of 0νββ decay. No signal is observed for any of these nuclides. Therefore, the following half-life limits at 90 % credibility are set: T 0ν 1/2 > 1.6 × 10 21 yr ( 114 Cd), T 0ν 1/2 > 1.9 × 10 21 yr ( 128 Te), T 0ν 1/2 > 6.8 × 10 18 yr ( 70 Zn), T 0ν 1/2 > 6.1 × 10 21 yr ( 130 Te), and T 0ν 1/2 > 1.1 × 10 21 yr ( 116 Cd).
The COBRA demonstrator, a prototype for a large-scale experiment searching for neutrinoless double beta-decay, was built at the underground laboratory Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It consists of an array of 64 monolithic, calorimetric CdZnTe semiconductor detectors with a coplanar-grid design and a total mass of 380 g. It is used to investigate the experimental challenges faced when operating CdZnTe detectors in low-background mode, to identify potential background sources and to show the long-term stability of the detectors. The first data-taking period started in 2011 with a subset of the detectors, while the demonstrator was completed in November 2013. To date, more than 250 kg d of data have been collected. This paper describes the technical details of the experimental setup and the hardware components.
Events near the cathode and anode surfaces of a coplanar grid CdZnTe detector are identifiable by means of the interaction depth information encoded in the signal amplitudes. However, the amplitudes cannot be used to identify events near the lateral surfaces. In this paper a method is described to identify lateral surface events by means of their pulse shapes. Such identification allows for discrimination of surface alpha particle interactions from more penetrating forms of radiation, which is particularly important for rare event searches. The effectiveness of the presented technique in suppressing backgrounds due to alpha contamination in the search for neutrinoless double beta decay with the COBRA experiment is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.